
F.E. Sem - 2 CBCGS SPA – MAY 17

Q.1.a.) Convert 0010 0100 0010 1101 from base 2 to decimal. Convert 134 from

base 10 to hexadecimal. Write steps for conversion.

Ans:

 Binary to decimal: The steps to be followed are:

1. Multiply the binary digits (bits) with powers of 2 according to their positional

weight.

2. The position of the first bit (going from right to left) is 0 and it keeps on

incrementing as you go towards left for every bit.

3. Given: (0010 0100 0010 1101)2 = (?)10

4. 0*215+0*214+1*213+0*212+0*211+1*210+0*29+0*28+0*27+0*26+1*25+0*24+1*23+1

*22+0*21+1*20

=0+0+8192+0+0+1024+0+0+0+0+32+0+8+4+1

=9261

(0010 0100 0010 1101)2 = (9261)10

Decimal to hexadecimal: The steps to be followed are:

1. Divide the decimal number by 16. Treat the division as an integer division.

2. Write down the remainder (in hexadecimal).

3. Divide the result again by 16. Treat the division as an integer division.

4. Repeat step 2 and 3 until result is 0.

5. The hexadecimal value is digit sequence of the reminders from last to first.

6. Given: (134)10 = (?)16

 16 134

 16 8 6

0 8

 (134)10 = (86)16

Q.1.b) Enlist all data types in C language along with their memory requirement,

format specifiers and range.

Ans:

Sr.
NO.

Data Type Type of data to
be stored

Range Space required
in memory
(bytes)

1. Char 1 character in
ASCII form

-127 to 128 1

2. Signed char 1 character in
ASCII

-127 to 128 1

3. Unsigned char 1 character in
ASCII form

0 to 255 1

4. Int Integer nos. -32768 to 32767 2

5. Signed Int Integer nos. -32768 to 32767 2

6. Unsigned Int Integer nos. 0 to 65535 2

7. Short Int Integer nos. -32768 to 32767 2

8. Long int Integer nos. -2147483648 to
2147483647

4

9. Signed short int Integer nos. -32768 to 32767 2

10. Signed Long int Integer nos. -2147483648 to
2147483647

4

11. Unsigned short int Integer nos. 0 to 65535 2

12. Unsigned long int Integer nos. 0 to
4294967296

4

13. Float Fraction nos. 3.4e-38 to 3.4e38 4

14. Double Fraction nos. 1.7e-308 to
1.7e308

8

15. Long double Fraction nos. 3.4e-4932 to
1.1e4932

10

Q.1.c) Draw flowchart for “if…else” and “while” statement of C language.

Ans:

 If…..else flowchart

 FALSE

 TRUE

 While flowchart

 FALSE

 True

Test Expression

Body of if Body of else

Test Expression

Body of while Loop

Statement just below while

Q.1.d) What is the usage of storage classes? Explain extern storage classes with

suitable example.

Ans:

1. The different locations I the computer where we can store data and their

accessibility, initial values etc. vary based on the way they are declared. These

different ways are termed as different storage classes.

2. In C, we have four storage classes namely

i. Automatic

ii. Register

iii. Static

iv. Extern or Global.

Extern Classes:

1. In this case data is stored in memory.

2. The initial variable of such variable is zero.

3. The scope of the variable is zero i.e. it is accessible from anywhere in the

program.

4. The life of such variable is till the program is alive.

5. Let us see the example

#include<stdio.h>

#include<conio.h>

int a=5;

void main

{

 Int a=10;

 printf(“%d\n”,a);

 printf(“%d\n”,::a);

a=::a+a;

printf(“%d\n”,a);

printf(“%d\n”,::a);

::a=a;

printf(“%d\n”,a);

printf(“%d\n”,::a);

getch();

}

Output:

 10

 5

 15

 5

 15

 15

Q.1.e) Differentiate between structure and union.

Ans:

Sr. NO. Structure Union

1. Memory allotted to structure is
equal to the space require
collectively by all the members of
the structure.

Memory allotted for a union is equal to
the space required by the largest
memory of that union

2. Data is more secured in structure. Data can be corrupted in a union.

3. Structure provide ease of
programming.

Unions are comparatively difficult for
programming.

4. Structures require more memory. Unions require less memory.

5. Structure must be used when
information of all the member
elements of a structure are to be
stored.

Unions must be used when only one of
the member elements of the union is
to be stored.

Q.2.a) What is the need of computer programming. What do you mean by

structured programming? Develop an ALGORITHM and FLOWCHART to find reverse

of a number.

Ans:

1. Programming is to give the machine a list of steps to perform a particular task.

2. If the system to which programming is done is a computer than it is called as

Computer programming.

3. A programming of any system has to be done in the language understood by

that system.

4. Programming languages are an interface between humans and computer,

they allow us to communicate with computers in order to do awesome

things.

5. Structured programming (SP) is a technique devised to improve the

reliability and clarity of programs

6. In SP, control of program flow is restricted to three structures, sequence,

IF THEN ELSE, and DO WHILE, or to a structure derivable from a

combination of the basic three. Thus, a structured program does not

need to use GO TOs or branches (unless it is written in a language that

does not have statement forms corresponding to the SP structures, in

which case, GO TOs may be used to simulate the structures).

7. The result is a program built of modules that are highly independent of

each other.

8. In turn, this allows a programmer to be more confident that the code

contains fewer logic errors and will be easier to debug and change in the

future.
9. However, SP may be less efficient than an unstructured counterpart.

Algorithm:

1. START

2. PRINT “Enter a number”

3. INPUT n.

4. d1 = n mod 10

5. d2 = n/10

6. PRINT d1, d2.

7. STOP.

Flowchart:

START

PRINT “Enter a

number”

INPUT n

d1 = n mod 10

d2 = /10

PRINT d1,d2

STOP

Q.2.b) Write a menu driven program to perform arithmetic operations on two

integers. The menu should be repeated until user selects “STOP” option. Program

should have independent user defined functions for each case.

Ans:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int operator,ans;

 double firstNumber,secondNumber;

 clrscr();

 do

 {

 printf("Enter a operation:\n1.Addition\n2.Subtraction\n3.Multiplication\n4.Divison");

 scanf("%d", &operator);

 printf("Enter two operands: ");

 scanf("%lf %lf",&firstNumber, &secondNumber);

 switch(operator)

 {

 case 1:

 printf("%.1lf + %.1lf = %.1lf",firstNumber, secondNumber, firstNumber +

secondNumber);

 break;

 case 2:

 printf("%.1lf - %.1lf = %.1lf",firstNumber, secondNumber, firstNumber -

secondNumber);

 break;

 case 3:

 printf("%.1lf * %.1lf = %.1lf",firstNumber, secondNumber, firstNumber *

secondNumber);

 break;

 case 4:

 printf("%.1lf / %.1lf = %.1lf",firstNumber, secondNumber, firstNumber /

secondNumber);

 break;

 default:

 printf("Error! operator is not correct");

 }

 printf("\nDo you want to continue 1.YES 2. NO");

 scanf("%d",&ans);

 }

 while(ans==1);

 getch();

}

Output:

Enter an Operation:

1. Addition

2. Subtraction

3. Multiplication

4. Division

1

Enter two operands 10 20

10.0 + 20.0 = 30.0

Do you want to continue 1.YES 2.NO 1

 Enter an operation

1. Addition

2. Subtraction

3. Multiplication

4. Division

2

Enter two operands: 50 60

50.0 – 60.0 = -10.0

Do you want to continue 1.YES 2.NO 2

Q.3.a) Write a program to create two integer of size 8 and 7. Initialize the arrays

with random values. Sort the arrays in ascending order with the help of user

defined function namely “sort array”. Merge these arrays with the help of another

user defined function named “merge arrays” which returns a new array. Program

should display the arrays before and after sorting, also the merged arrays.

Ans:

#include<conio.h>

#include<stdio.h>

void main()

{

 int a[25],b[25],sum[50],i,j,k=1,n,m,s,temp;

 clrscr();

 printf("Enter the number of element in first array :");

 scanf("%d",&n);

 printf("\nEnter the element of array :\n");

 for(i=1;i<=n;i++)

 scanf("%d",&a[i]);

 printf("\nEnter the number of element in second array :");

 scanf("%d",&m);

 printf("\nEnter the element of array :\n");

 for(i=1;i<=m;i++)

 scanf("%d",&b[i]);

 s=m+n;

 for(i=1;i<=s;i++)

 {

 if(i<=n)

 {

 sum[i]=a[i];

 }

 else

 {

 sum[i]=b[k];

 k=k+1;

 }

 }

 printf("\n Array before sorting is\n");

 for(i=1;i<=s;i++)

 printf("%d\t",sum[i]);

 for(i=1;i<=s;i++)

 {

 for(j=1;j<=s;j++)

 {

 if(sum[i]<=sum[j])

 {

 temp=sum[i];

 sum[i]=sum[j];

 sum[j]=temp;

 }

 }

 }

 printf("\nElement of array after sorting is :\n");

 for(i=1;i<=s;i++)

 printf("%d\t",sum[i]);

 getch();

}

Output:

Enter the number of elements in first array: 8

Enter the element of array:

1 4 7 8 9 22 66 11

Enter the number of elements in second array: 7

33 55 88 14 16 18 79

Array before sorting is

1 4 7 8 9 22 66 11 33 55 88 14 16 18 79

Array after sorting is

 1 4 7 8 9 11 14 16 18 22 33 55 66 79 88

Q.3.b) What are advantages and disadvantages of recursion? Comment on

conditions to be considered while writing a recursive function. Write a program to

print Fibonacci series up to N terms using a recursive function.

Ans:

Recursion: A function that calls itself is called as recursive function and this

technique is called as recursion.

Advantages:

1. Reduce unnecessary calling of functions.

2. Through Recursion one can solve problems in easy way while its iterative

solution is very big and complex.

3. Extremely useful when applying the same solution.

Disadvantages:

1. Recursive solution is always logical and it is very difficult to trace.

2. In recursive we must have an if statement somewhere to force the
function to return without the recursive call being executed, otherwise the
function will never return.

3. Recursion uses more processor time.

i. A recursive function must definitely have a condition that exits from calling a
function again.

ii. Hence there must be condition that calls the function itselfif that condition is
true.

iii. If the condition is false then it will exit from the loop of calling itself again.

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

 int n,i;

 int fibo(int,int,int);

 clrscr();

 printf(“Enter the number of elements”);

 scanf(“%d”,&n);

 printf(“0\n”);

 for(i=1;i<=n-1;i++)

 {

 printf(“%d\n”,fibo(0,1,i));

 }

 getch();

}

int fibo(int a, int b int i)

{

 if(i==1)

 return b;

 else

 return(fibo(b,a+b,--i));

}

Output:

Enter the number of elements:10

0

1

1

2

3

5

8

13

21

34

Q.4.a) What are structures? Comment on nested structures. Write a program to

read Title, Author and price of 10 books using array of structures. Display the

records in ascending order of Price.

Ans:

Structure:

1. Structure is a collection of multiple data elements that can be of different data

types.

2. Array is a collection of data items of same type, while structure can have data

items of different types.

3. The memory space required to store one variable of structure is equal to the

memory space required by all the elements independently to be stored in memory.

4. syntax

struct structure_name

{

 data_type variable_name;

 data_type variable_name;

 -

 -

}

Program:

#include <stdio.h>

struct book

{

 int price;

 char title[80];

 char author[80];

};

void accept(struct book list[80], int s);

void display(struct book list[80], int s);

void bsortDesc(struct book list[80], int s);

void main()

{

 struct book data[20];

 int n;

 clrscr();

 accept(data,10);

 bsortDesc(data, 10);

 display(data, 10);

 getch();

}

void accept(struct book list[80], int s)

{

 int i;

 for (i = 0; i < s; i++)

 {

 printf("\nEnter title : ");

 scanf("%s", &list[i].title);

 printf("Enter Author name: ");

 scanf("%s",&list[i].author);

 printf("Enter price : ");

 scanf("%d", &list[i].price);

 }

}

void display(struct book list[80], int s)

{

 int i;

 printf("\n\nTitle\t\tAuthor\t\tprice\n");

 printf("-------------------------------------\n");

 for (i = 0; i < s; i++)

 {

 printf("%s\t\t%s\t\t%d\n", list[i].title, list[i].author, list[i].price);

 }

}

void bsortDesc(struct book list[80], int s)

{

 int i, j;

 struct book temp;

 for (i = 0; i < s ; i++)

 {

 for (j = 0; j < (s -i); j++)

 {

 if (list[j].price > list[j + 1].price)

 {

 temp = list[j];

 list[j] = list[j + 1];

 list[j + 1] = temp;

 }

 }

 }

}

Output:

 Enter Title: physics

 Enter Author name: Einstein

 Enter Price:1000

 Enter Title:english

 Enter Author name:willey

 Enter Price:900

 Enter Title:chemistry

 Enter Author name:narayan

 Enter Price:800

 Enter Title:history

 Enter Author name:george

 Enter Price:700

 Enter Title:geography

 Enter Author name:bailey

 Enter Price:600

 Enter Title:AOA

 Enter Author name:Koreman

Enter Price:500

 Enter Title:SPA

 Enter Author name:Harish

 Enter Price:400

 Enter Title:Maths

 Enter Author name:kumbhojkar

 Enter Price:300

 Enter Title:CG

 Enter Author name:hern

 Enter Price:200

 Enter Title:python

 Enter Author name:naryan

 Enter Price:100

 Title Author price

Python Narayan 100

CG hern 200

Maths kumbhojkar 300

SPA Harish 400

AOA koreman 500

Geography bailey 600

History George 700

Chemistry Narayan 800

English willey 900

Physics Einstein 1000

Q.4.b. i) Explain gets() and puts() functions of C language. Comment on their

parameters and return values.

 Ans:

 gets():

1. gets() function is used to scan a line of text from a standard input device.

2. This function will be terminated by a newline character.

3. The newline character won’t be included as part of the string. The string
may include white space characters.

 Syntax :

 char *gets(char *s);

4. This function is declared in the header file stdio.h.

5. It takes a single argument. The argument must be a data item representing
a string. On successful completion, shall return a pointer to string s.

 puts():

 The C library function int puts(const char *str) writes a string to stdout up to

 but not including the null character. A newline character is appended to the

 output.

 Example: int puts(char const*str)

 Parameters: str-this is the C string to be written

 Return value: If successful, non-negative value is returned. On error, the

 function returns EOF.

Q.4.b. ii) Enlist bitwise operator in c language. Explain any 2 with

 examples.

 Ans.

 The bitwise operators are listed below

1. ~ to perform bitwise NOT operation.

2. & to perform bitwise AND operation.

3. | to perform bitwise OR operation.

4. ^ to perform bitwise EXOR operation.

5. << to perform bitwise left shift operation.

6. >> to perform bitwise right shift operation.

AND operator

Example .

5 & 3 = 1

(5)10 = (0 1 0 1)2

(3)10 = (0 0 1 1)2

 (0 0 0 1)2 = (1)10

 OR operator

 Example.

 12 | 9 = 13

 (12)10 = (1 1 0 0)2

 (9)10 = (1 0 0 1)2

 (1 1 0 1)2 = (2)10

Q.5.a) Write a programs to print following patterns for N lines.

 1. 5 4 3 2 *

 5 4 3 * 1

 5 4 * 2 1

 5 * 3 2 1

 * 4 3 2 1

Program:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i,j;

 clrscr();

 for(i=1;i<=5;i++)

 {

 for(j=5;j>=1;j--)

 {

 if(i==j)

 printf("*");

 else

 printf("%d",j);

 }

 printf("\n");

 }

 getch();

 }

 Output:

 5 4 3 2 *

 5 4 3 * 1

 5 4 * 2 1

 5 * 3 2 1

 * 4 3 2 1

Q.5.b) 2. 5

 5 4

 5 4 3

 5 4 3 2

 5 4 3 2 1

Program:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i,j;

 clrscr();

 for(i=5;i>=1;i--)

 {

 for(j=1;j<i;j++)

 printf(" ");

 for(j=5;j>=i;j--)

 printf("%d",j);

 printf("\n");

 }

 getch();

 }

 Output:

 . 5

 5 4

 5 4 3

 5 4 3 2

 5 4 3 2 1

Q.5.b) Why files are needed? Explain all the opening modes. Write a program

to create copy of the user specify names of source and destination files.

 Ans. Need of files:

1. When a program is terminated, the entire data is lost. Storing in a file will

preserve your data even if the program terminates.

2. If you have to enter a large number of data, it will take a lot of time to enter

them all. However if you have a file containing all the data, you can easily

access the contents of the file using few commands in c.

3. You can easily move your data from one computer to another without any

changes.

4. The various modes in which a file can be opened are as listed below:

i. “r” indicates that the file is to be opened indicates in the read mode.

ii. “w” indicates that the file is to be opened indicates in the write mode.

When a file is opened in write mode the data written in the file overwrites

the previously stored data in the file.

iii. ”a” indicates that the file is to be opened in the append mode.In this mode

the data written into the file is appended towards the end of the already

stored data in the file.The earlier stored data remains as it is.

iv. “w+” indicates that the file is to be opened in write and read mode.

v. “r+” indicates that the file is to be opened in read and write mode.

//program to create a copy of file.

#include <stdio.h>

#include<conio.h>

#include <stdlib.h>

void main()

{

 char ch, source_file[20], target_file[20];

 FILE *source, *target;

 clrscr();

 printf("Enter name of file to copy\n");

 gets(source_file);

 source = fopen(source_file, "r");

 if(source == NULL)

 {

 printf("Press any key to exit...\n");

 exit(EXIT_FAILURE);

 }

 printf("Enter name of target file\n");

 gets(target_file);

 target = fopen(target_file, "w");

 if(target == NULL)

 {

 fclose(source);

 printf("Press any key to exit...\n");

 exit(EXIT_FAILURE);

 }

 while((ch = fgetc(source)) != EOF)

 fputc(ch, target);

 printf("File copied successfully.\n");

 fclose(source);

 fclose(target);

 getch();

}

 Output:

Enter name of file to copy

 Factorial.c

 Enter name of targt file

 Factorial-copy.c

 File copied successfully

Q.6.a) Comment on dynamic memory allocation. Write a program to read and store

N integers in a Array, where value of N is defined by user. Find minimum and

maximum members from the Array.

Ans. Dynamic memory allocation:

1. Dynamic Memory Allocation refers to managing system memory at runtime.

2. Dynamic memory management in C programming language is performed via a

group four functions namely malloc(), calloc().

3. These four dynamic memory allocation function of the C programming language

are defined in the C standard library header file <stdlib.h>. Dynamic memory

allocation uses the heap space of the system memory.

 malloc()

1. malloc() is used to allocate a block of memory on the heap.
2. Specifically, malloc() allocates the user a specified number of bytes but does not

initialize.
3. Once allocated, the program accesses this block of memory via a pointer

that malloc() returns.
4. The default pointer returned by malloc() is of the type void but can be cast into a

pointer of any data type.
5. However, if the space is insufficient for the amount of memory requested

by malloc().
6. Then the allocation fails and a NULL pointer is returned.
7. The function takes a single argument, which is the size of the memory chunk to

be allocated.

 //program to find maimum and minimum element from the array

 #include<stdio.h>

 #include<conio.h>

 #define MAX_SIZE 100

 void main()

 {

 int arr[MAX_SIZE];

 int i, max, min, size;

 clrscr();

 printf("Enter size of the array: ");

 scanf("%d", &size);

 printf("Enter elements in the array: ");

 for(i=0; i<size; i++)

 {

 scanf("%d", &arr[i]);

 }

 max = arr[0];

 min = arr[0];

 for(i=1; i<size; i++)

 {

 if(arr[i] > max)

 {

 max = arr[i];

 }

 if(arr[i] < min)

 {

 min = arr[i];

 }

 }

 printf("Maximum element = %d\n", max);

 printf("Minimum element = %d", min);

 getch();

}

Output:

 Enter size of the array: 10

 Enter elements in the array:

 6

 4

 3

 8

 9

 12

 65

 87

 54

 24

 Maximum element=87

 Minimum element=3

 Q.6.b) Explain any 4 functions from string.h header file with suitable examples.

 Ans:

 Functions from string.h header file are as follows

 strlen() function

1. This function returns an integer value that is the length of the string passed to

the function.

2. When returning the length of the string it does not consider the space required

for null Character.

3. Hence it returns the exact length of the string neglecting these space required

for null character.

 Example:

 #include<conio.h>

 #include <stdio.h>

 #include<string.h>

 {

 Int l;

 char a[100];

 clrscr();

 printf(“enter a string\n”);

 gets(a);

 l=strlen(a);

 printf(“the length of the entered string is: %d”,l);

 getch();

 }

 Output:

 Enter a string

 Hello

 The length of the entered string is 5

 2. strcpy() function

 This function copies the second string into the first string passed to the function.

 The second string remains unchanged. Only the first string is changed and gets a

 copy of the second string.for e.g. strcpy(str1,str2), will copy the string “str2” into

 the string “str1”.

 Example:

 #include<conio.h>

 #include<stdio.h>

 #include<string.h>

 void main()

 {

 char a[100],b[100];

 clrscr();

 printf(“enter a string\n”);

 gets(a);

 strcpy(b,a);

 printf(“the new string is %s”,b);

 getch();

 }

 Output:

 Enter a string

 Hello, how are you?

 The new string is Hello, how are you?

3.Strcmp() function

 This function compares the two string variables passed to it.it returns an integer

 value equal to:

1. 0(zero),if the two strings are equal.

2. Negative value ,if the first string is smaller than the second string.

3. Positive value,if the first string is greater than the second string.

 Both the strings remain unchanged.

 The string is smaller means its alphabetical sequence is smaller. For

 Example: ”Hello” is lesser than “Hi”; because the first character “H” is same, but

the second character “e” is smaller than “I”. ”e” is smaller than “I” because “e” comes

before “i” in the alphabets i.e. A,B,C, ……Z. the function compares the ASCII value of the

characters.

 Example:

 #include<stdio.h>

 #include<conio.h>

 #include<string.h>

 void main()

 {

 char a[100],b[100];

 clrscr();

 printf(“enter two strings:\n”);

 gets(a);

 gets(b);

 if(strcmp(a,b)==0)

 printf(“strings are equal “);

 else

 printf(“%s string is greater “,a);

 else

 printf(“%s string is greater”,b);

 getch();

 }

 Output:

 Enter two strings:

 Hello

 Hi

 Hi string is greater

4. strcat() function

This function concatenates (joins) the two string variables passed to it. It

returns a string of the combination of the two in the first string variable.

Example:

 #include<conio.h>

 #include<stdio.h>

 #include<string.h>

 void main()

 {

 char a[100],b[100];

 clrscr();

 printf(“enter two strings:\n”);

 gets(a);

 gets(b);

 strcat(a,b);

 printf(“the concatenated strig is %s”,a);

 getch();

 }

Output:

 Enter two strings:

 Mumbai

 University

 The concatenated string is MumbaiUniversity

Q.6.c) Explain continue and break statements with the help of suitable examples.

 Ans.

1. continue statement-the continue statement also neglects the statements after it

in the Loop and transfers the control back to the starting of the loop for next

iteration.

 *operation of continue statement in a for loop.

 For(initialization;condition;inc/dec)

 {

 -

 -

 Continue;

 -

 -

 }

 *operation of continue statement in a while loop

 while(condition)

 {

 -

 continue;

 -

 }

 *operation of continue statements in a do-while loop

 do

 {

 -

 -

 continue;

 -

 -

 }while(condition);

2.Break statement:

 The break statement neglects the statement after it in the loop and

transfers the control outside the loop

 *operation of break statement in a for loop

 for(initialization;condition;inc/dec)

 {

 -

 -

 break;

 -

 -

 }

 *operation of break statement in a while loop

 while(condition)

 {

 -

 -

 break;

 -

 -

 }

 *operation of break statement in a do-while loop

 do

 {

 -

 -

 break;

 -

 -

 }while(condition);

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 1

Q1. a) Define union. Compare Structure and Union.

Ans.

Union :- A union is a special data type available in C that allows storing

different data types in the same memory location.

 Structure Union

Keyword The keyword ‘struct’ is used to

define a structure.

The keyword ‘union’ is used to

define a union.

Size When a variable associated with

a structure, the compiler

allocates the memory for each

member. The size of structure is

greater than or equal to the sum

of sizes of its members.

When a variable associated with

a union, the compiler allocates

the memory by considering the

size of the largest memory.

Hence, The size of union is

equal to the size of largest

members.

Memory Each member within a structure

is assigned and unique storage

area of location.

Memory allocated is shared by

individual members of union.

Value

Altering

Altering the value of a member

will not affect other members of

the structure.

Altering the value of any of the

member will alter other member

values.

Accessing

members

Individual member can be

accessed at a time.

Only one member can be

accessed at a time.

Initializing

Members

Several members of a structure

can initialize at once.

Only the first member of a

union can be initialized.

Q1. b) What is an error ? Explain different types of errors occurred in

program.

Ans.

 Error :-

While writing c programs, errors also known as bugs in the world of

programming may occur unwillingly which may prevent the program to

compile and run correctly as per the expectation of the programmer.

Types of errors :-

 Basically there are three types of errors in c programming:

1. Runtime Errors :

C runtime errors are those errors that occur during the execution of

a c program and generally occur due to some illegal operation performed

Q. P. Code : 23993

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 2

in the program. For example,

 Dividing a number by zero

 Trying to open a file which is not created

 Lack of free memory space

2. Compile Errors :-

Compile errors are those errors that occur at the time of

compilation of the program. C compile errors may be further

classified as:

2.1 Syntax Errors :

When the rules of the c programming language are not

followed, the compiler will show syntax errors.

2.2 Semantic Errors :

Semantic errors are reported by the compiler when the

statements written in the c program are not meaningful to the

compiler.

3. Logical Errors :-

Logical errors are the errors in the output of the program. The

presence of logical errors leads to undesired or incorrect output and

are caused due to error in the logic applied in the program to produce

the desired output. Also, logical errors could not be detected by the

compiler, and thus, programmers have to check the entire coding of a

c program line by line.

Q1. c) Explain switch case and if-else ladder with example.

Ans.

 Switch Case :-

A switch statement allows a variable to be tested for equality against a

list of values. Each value is called a case, and the variable being switched on

is checked for each switch case.

Example :

Code :

// Following is a simple program to demonstrate syntax of switch.

#include <stdio.h>

#include <conio.h>

int main()

{

 int x = 2;

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 3

 switch (x)

 {

 case 1: printf("Choice is 1");

 break;

 case 2: printf("Choice is 2");

 break;

 case 3: printf("Choice is 3");

 break;

 default: printf("Choice other than 1, 2 and 3");

 break;

 }

 return 0;

 }

Output :

Choice is 2

If-else ladder :-

The if else ladder statement in C programming language is used to test

set of conditions in sequence. An if condition is tested only when all

previous if conditions in if-else ladder is false. If any of the conditional

expression evaluates to true, then it will execute the corresponding code

block and exits whole if-else ladder.

Example :

Code :

#include<stdio.h>

#include<conio.h>

 void main()

{

 int a;

 printf(“Enter a number : “);

 scanf(“%d”,&a);

 if(a > 0)

 {

 printf(“\nThe number is positive “);

 }

 else if(a<0)

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 4

 {

 printf(“\n The number is negative”);

 }

 else

 {

 printf(“Number is zero”);

 }

 getch();

}

 Output :

 Enter a number : 25

 The number is positive.

Q1. d) Explain any four standard library functions from sting.h ?

Ans.

Standard Library Functions from string.h :-

In the C Programming Language, the Standard Library Functions are

divided into several header files.

The following is a list of functions found within the <string.h> header file:

I. Comparison functions

1. memcmp - Compare Memory Blocks

2. strcmp - String Compare

3. strcoll - String Compare Using Locale-Specific Collating

 sequence.

4. strncmp - Bounded String Compare

5. strxfrm - Transform Locale-Specific String

II. Concatenation functions

1. strcat - String Concatenation

2. strncat - Bounded String Concatenation

III. Copying functions

1. memcpy - Copy Memory Block

2. memmove - Copy Memory Block

3. strcpy - String Copy

4. strncpy - Bounded String Copy

IV. Search functions

1. memchr - Search Memory Block for Character

2. strchr - Search String for Character

3. strcspn - Search String for Intial Span of Characters Not in Set

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 5

4. strpbrk - Search String for One of a Set of Characters

5. strrchr - Search String in Reverse for Character

6. strspn - Search String for Initial Span of Characters in Set

7. strstr - Search String for Substring

8. strtok - Search String for Token

V. Miscellaneous functions

1. memset - Initialize Memory Block

2. strerror - Convert Error Number to String

3. strlen - String Length

Q1. e) Explain break and continue statement with example.

Ans.

It is sometimes desirable to skip some statements inside the loop or

terminate the loop immediately without checking the test expression. In such

cases, break and continue statements are used.

break Statement :-

The break statement terminates the loop (for, while and

do...while loop) immediately when it is encountered. The break

statement is used with decision making statement such as if...else. In C

programming, break statement is also used with switch...case

statement.

Syntax of break statement :

break;

Example :-

 Code :

 // Program to calculate the sum of maximum of 10 numbers

// Calculates sum until user enters positive number

include <stdio.h>

include <conio.h>

int main()

{

 int i;

 double number, sum = 0.0;

 for (i=1; i <= 10; ++i)

 {

 printf("Enter a n%d: ",i);

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 6

 scanf("%lf",&number);

 // If user enters negative number, loop is terminated

 if(number < 0.0)

 {

 break;

 }

 sum += number; // sum = sum + number;

 }

 printf("Sum = %.2lf",sum);

 return 0;

}

Output :

Enter a n1: 2.4

Enter a n2: 4.5

Enter a n3: 3.4

Enter a n4: -3

Sum = 10.30

continue Statement :-

The continue statement skips some statements inside the loop.

The continue statement is used with decision making statement such

as if...else.

 Syntax of continue Statement :

continue;

 Example :-

 Code :

 // Program to calculate sum of maximum of 10 numbers

// Negative numbers are skipped from calculation

include <stdio.h>

include <conio.h>

int main()

{

 int i;

 double number, sum = 0.0;

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 7

 for(i=1; i <= 10; ++i)

 {

 printf("Enter a n%d: ",i);

 scanf("%lf",&number);

 // If user enters negative number, loop is terminated

 if(number < 0.0)

 {

 continue;

 }

 sum += number; // sum = sum + number;

 }

 printf("Sum = %.2lf",sum);

 return 0;

}

 Output :

Enter a n1: 1.1

Enter a n2: 2.2

Enter a n3: 5.5

Enter a n4: 4.4

Enter a n5: -3.4

Enter a n6: -45.5

Enter a n7: 34.5

Enter a n8: -4.2

Enter a n9: -1000

Enter a n10: 12

Sum = 59.70

Q2. a) Define Algorithm. Write Algorithm to check whether given number is

Armstrong number or not also mention input and output specifications to

algorithm.

Ans.

 Algorithm :-

An Algorithm is a sequence of steps to solve a problem.

Algorithm is a step-by-step procedure, which defines a set of

instructions to be executed in a certain order to get the desired output.

 Characteristics of Algorithm :-

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 8

1) Finiteness - An algorithm must always terminate after a

finite number of steps.

2) Definiteness - Each step of an algorithm must be precisely

defined; the actions to be carried out must be

rigorously and unambiguously specified for

each case.

3) Input - An algorithm has zero or more inputs, i.e,

quantities which are given to it initially

before the algorithm begins.

4) Output - An algorithm has one or more outputs i.e,

quantities which have a specified relation to

the inputs.

5) Effectiveness - An algorithm is also generally expected to

be effective. This means that all of the

operations to be performed in the algorithm

must be sufficiently basic that they can in

principle be done exactly and in a finite

length of time.

 Algorithm to check whether given number is Armstrong or not :-

 Step I : Start.

 Step II : Input n, sum, rem, temp.

 Step III : sum = 0, rem=0.

 Step IV : Print “Enter an integer number : ”

 Step V : Read n.

 Step VI : temp = n.

 Step VII : If temp is less than equal to zero Then,

Go to Step IX.

 Else

 rem = temp mod 10

 sum = sum + (rem X rem X rem)

 temp = temp / 10

 Step VIII : Go to Step VII.

 Step IX : If sum is equal to n Then,

 Print “Number n is an Armstrong number.”

 Else

 Print “Number n is not an Armstrong number.”

 Step X : Stop

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 9

Q2. b) Explain various storage classes with example.

Ans.

 Storage Classes :-

Storage Classes are used to describe about the features of a

variable/function. These features basically include the scope, visibility and

life-time which help us to trace the existence of a particular variable during

the runtime of a program. To specify the storage class for a variable, the

following syntax is to be followed:

Syntax:

storage_class var_data_type var_name;

C language uses 4 storage classes, namely:

i. Automatic storage class :

This is the default storage class for all the variables declared

inside a function or a block. Hence, the keyword auto is rarely used

while writing programs in C language. Auto variables can be only

accessed within the block/function they have been declared and not

outside them (which defines their scope). Of course, these can be

accessed within nested blocks within the parent block/function in

which the auto variable was declared. However, they can be accessed

outside their scope as well using the concept of pointers given here by

pointing to the very exact memory location where the variables

resides. They are assigned a garbage value by default whenever they

are declared.

ii. External storage class :

Extern storage class simply tells us that the variable is defined

elsewhere and not within the same block where it is used. Basically,

the value is assigned to it in a different block and this can be

overwritten / changed in a different block as well. So an extern

variable is nothing but a global variable initialized with a legal value

where it is declared in order to be used elsewhere. It can be accessed

within any function/block. Also, a normal global variable can be made

extern as well by placing the ‘extern’ keyword before its

declaration/definition in any function/block. This basically signifies

that we are not initializing a new variable but instead we are

using/accessing the global variable only. The main purpose of using

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 10

extern variables is that they can be accessed between two different

files which are part of a large program. For more information on how

extern variables work, have a look at this link.

iii. Static storage class :

This storage class is used to declare static variables which are

popularly used while writing programs in C language. Static variables

have a property of preserving their value even after they are out of

their scope! Hence, static variables preserve the value of their last use

in their scope. So we can say that they are initialized only once and

exist till the termination of the program. Thus, no new memory is

allocated because they are not re-declared. Their scope is local to the

function to which they were defined. Global static variables can be

accessed anywhere in the program. By default, they are assigned the

value 0 by the compiler.

iv. Register storage class :

This storage class declares register variables which have the

same functionality as that of the auto variables. The only difference is

that the compiler tries to store these variables in the register of the

microprocessor if a free register is available. This makes the use of

register variables to be much faster than that of the variables stored in

the memory during the runtime of the program. If a free register is not

available, these are then stored in the memory only. Usually few

variables which are to be accessed very frequently in a program are

declared with the register keyword which improves the running time

of the program. An important and interesting point to be noted here is

that we cannot obtain the address of a register variable using pointers.

 Example :-

 Code :

// A C program to demonstrate different storage classes

#include <stdio.h>

 #include <conio.h>

extern int x = 9;

int z = 10;

int main()

{

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 11

 auto int a = 32;

 register char b = 'G';

 extern int z;

 printf("Hello World!\n");

 printf("\nThis is the value of the auto " " integer 'a': %d\n",a);

 printf("\nThese are the values of the" " extern integers 'x' and 'z'" "

respectively: %d and %d\n", x, z);

 printf("\nThis is the value of the " "register character 'b': %c\n",b);

 x = 2;

 z = 5;

 printf("\nThese are the modified values " "of the extern integers 'x'

and " "'z' respectively: %d and %d\n",x,z);

 printf("\n'y' is a static variable and its " "value is NOT initialized to

5 after" " the first iteration! See for" " yourself :)\n");

 while (x > 0)

 {

 static int y = 5;

 y++;

 printf("The value of y is %d\n",y);

 x--;

 }

 printf("\nBye! See you soon.\n");

 return 0;

}

 Output :

Hello World!

This is the value of the auto integer 'a': 32

These are the values of the extern integers 'x' and 'z'

respectively: 9 and 10

This is the value of the register character 'b': G

These are the modified values of the extern integers 'x'

and 'z' respectively: 2 and 5

'y' is a static variable and its value is NOT initialized

to 5 after the first iteration! See for yourself :)

The value of y is 6

The value of y is 7

Bye! See you soon.

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 12

Q3. a) Explain Nested Structure. Write a program using nested structure to

create an Array of structure to store the details of N students.

The details are,

1. Student name

2. Student roll no

3. Marks of Physics, Chemistry, Maths.

Calculate total of P-C-M. Display the data in the format

Name Roll no Total marks

Ans.

 Nested structure :-

Nested structure in C is nothing but structure within structure. One

structure can be declared inside other structure as we declare structure

members inside a structure. The structure variables can be a normal structure

variable or a pointer variable to access the data. Nested structure in c

language can have another structure as a member. There are two ways to

define nested structure in c language:

1) Separate structure :

We can create 2 structures, but dependent structure should be

used inside the main structure as a member. Let's see the code of

nested structure.

 2) Embedded structure :

We can define structure within the structure also. It requires

less code than previous way. But it can't be used in many structures.

 The syntax of nested structure is given as :

 struct structure_name

 {

 data_type variable_name;

 _ _ _ _ _ _ _

 struct

 {

 data_type variable_name;

 _ _ _ _ _ _ _

 internal_structure_name;

 _ _ _ _ _ _ _ _

 }

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 13

 Solution Program :-

 Sourse Code :

 #include <stdio.h>

 #include <conio.h>

 struct students

 {

 char name[30] ;

 int roll_no, total;

 struct

 {

 int physics, chemistry, maths;

 }

 marks;

 };

 void main()

 {

 struct students n[100];

 int n, i, j;

 clrscr();

 printf(“Enter number of students : ”);

 scanf(“%d”, &n);

 for (i=0 ; i<=n-1 ; i++)

 {

 printf(“Enter following details of student :- ”);

 printf(“Name : ”);

 scanf(“%s”, & n[i].name);

 printf(“Roll number : ”);

 scanf(“%d”, & n[i].roll_no);

 printf(“Marks in Physics : ”);

 scanf(“%d”, & n[i].marks.physics);

 printf(“Marks in Chemistry : ”);

 scanf(“%d”, & n[i].marks.chemistry);

 printf(“Marks in Mathematics : ”);

 scanf(“%d”, & n[i].marks.maths);

 n[i].total = n[i].marks.physics + n[i].marks.chemistry +

n[i].marks.maths;

 }

 printf(“\n Name \t Roll Number \t Total \n”);

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 14

 printf(“ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\n”);

 for (i=0 ; i<=n-1 ; i++)

 {

 printf(“%s \t %d \t %d \n”, n[i].name, n[i].roll_no,

n[i].total);

 }

 getch();

 }

 Output :-

 Enter number of students : 3

 Enter following details of student :-

 Name : Saurav Palande

 Roll number : 45

 Marks in Physics : 50

 Marks in Chemistry : 60

 Marks in Mathematics : 30

 Enter following details of student :-

 Name : Sayali Rajapurkar

 Roll number : 40

 Marks in Physics : 50

 Marks in Chemistry : 60

 Marks in Mathematics : 40

 Enter following details of student :-

 Name : Amrit Shah

 Roll number : 65

 Marks in Physics : 60

 Marks in Chemistry : 60

 Marks in Mathematics : 60

 Name Roll Number Total

 _

 Saurav Palande 45 140

 Sayali Rajapurkar 40 150

 Amrit Shah 65 180

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 15

Q3. b) Define pointer and its use. Explain array of pointer with example.

Write program to swap the values by using call by reference concept.

Ans.

 Pointer :-

A pointer is a variable whose value is the address of another variable,

i.e., direct address of the memory location. Like any variable or constant,

you must declare a pointer before using it to store any variable address. The

general form of a pointer variable declaration is −

type *var-name;

 Uses of pointer :-

1. Pointers reduce the length and complexity of a program.

2. They increase execution speed.

3. A pointer enables us to access a variable that is defined outside

the function.

4. Pointers are more efficient in handling the data tables.

5. The use of a pointer array of character strings results in saving of

data storage space in memory.

Array of Pointers :-

Just like we can declare an array of int, float or char etc, we can

also declare an array of pointers, here is the syntax to do the

same.

Syntax :

datatype *array_name[size];

Example :

int *arrop[5];

Here arrop is an array of 5 integer pointers. It means that this

array can hold the address of 5 integer variables, or in other

words, you can assign 5 pointer variables of type pointer to int to

the elements of this array. arrop[i] gives the address of i th

element of the array. So arrop[0] returns address of variable at

position 0, arrop[1] returns address of variable at position 1 and

so on. To get the value at address use indirection operator (*).

So *arrop[0] gives value at address[0], Similarly *arrop[1] gives

the value at address arrop[1] and so on.

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 16

 Solution Program :-

 Source Code :

 //Program to swap the values by using call by reference concept.

 #include <stdio.h>

 #include <conio.h>

 void swap(int *x, int *y)

{

 int t ;

 t = *x ;

 *x = *y ;

 *y = t ;

 printf(“In function :”);

 printf("\nx = %d \t y = %d\n", *x,*y);

}

void main()

{

 int a, b;

 printf(“Enter the value of a : ”);

 scanf(“%d”, &a);

 printf(“Enter the value of b : ”);

 scanf(“%d”, &b);

 printf(“Before swapping : \n”);

 printf ("\na = %d \t b = %d\n", a, b) ;

 swap (&a, &b) ;

 printf(“After swapping : \n”);

 printf ("\na = %d \t b = %d\n", a, b) ;

 getch();

}

Output :

 Enter the value of a : 10

 Enter the value of b : 20

 Before swapping :

 a=10 b=20

 In function :

 x=20 y=10

 After swapping :

 a=20 b=10

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 17

Q4. a) Explain recursive function. Write a program to find the GCD of a

number by using recursive function.

Ans.

 Recursive function :-

In C, a function can call itself. This process is known as recursion.

And a function that calls itself is called as the recursive function. In

programming languages, if a program allows you to call a function inside the

same function, then it is called a recursive call of the function. The C

programming language supports recursion, i.e., a function to call itself. But

while using recursion, programmers need to be careful to define an exit

condition from the function, otherwise it will go into an infinite loop.

 Program :-

 Source Code :

 //Program to find GCD of a number by using recursive function.

 #include <stdio.h>

 #include <conio.h>

int gcd(int n1, int n2);

int main()

{

 int n1, n2;

 printf("Enter two positive integers : \n");

 scanf("%d %d", &n1, &n2);

 g = gcd(n1,n2);

 printf("G.C.D of %d and %d is %d.", n1, n2, g);

 return 0;

}

int gcd(int n1, int n2)

{

 while (n1 != n2)

 {

 if (n1 > n2)

 return gcd(n1 – n2, n2);

 else

 return gcd(n1, n2 – n1);

 }

 return a;

 }

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 18

Output :

Enter two positive integers:

366

60

G.C.D of 366 and 60 is 6.

Q4. b) Write a program to perform matrix multiplication by passing input

matrix to the function and printing resultant matrix.

Ans.

 Program :-

 Sourse code :

 //Program for matrix multiplication using functions.

#include <stdio.h>

#include <stdlib.h>

void input(int m, int n, int a[m][n])

{

 for (int i = 0; i < m; i++) {

 for (int j = 0; j < n; j++) {

 printf("%d, %d : ", i, j);

 scanf("%d", &a[i][j]);

 }

 }

}

void print(int m, int n, int a[m][n])

{

 int i, j;

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 printf("%3d ", a[i][j]);

 }

 printf("\n");

 }

}

void multiply(int m, int n, int p, int a[m][n], int b[n][p], int c[m][p])

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 19

{

 for (int i = 0; i < m; i++) {

 for (int j = 0; j < p; j++) {

 c[i][j] = 0;

 for (int k = 0; k < n; k++) {

 c[i][j] += a[i][k] * b[k][j];

 }

 }

 }

}

void main()

{

 int r1, c1, r2, c2;

 printf("Row and column for matrix #1 :\n");

 scanf("%d %d", &r1, &c1);

 printf("Row and column for matrix #2 :\n");

 scanf("%d %d", &r2, &c2);

 if (r2 != c1) {

 printf("The matrices are incompatible.\n");

 exit(EXIT_FAILURE);

 }

 int mat1[r1][c1], mat2[r2][c2], ans[r1][c2];

 printf("Enter elements of the first matrix.\n");

 input(r1, c1, mat1);

 printf("The elements of the first matrix are :\n");

 print(r1, c1, mat1);

 printf("Enter elements of the second matrix.\n");

 input(r2, c2, mat2);

 printf("The elements of the second matrix are :\n");

 print(r2, c2, mat2);

 multiply(r1, r2, c2, mat1, mat2, ans);

 printf("The product is :\n");

 print(r1, c2, ans);

 getch();

}

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 20

Output :

Row and column for matrix #1 :

2

2

Row and column for matrix #2 :

2

2

Enter elements of the first matrix.

0, 0 : 1

0, 1 : 17

1, 0 : 25

1, 1 : 30

The elements of the first matrix are :

1 17

25 30

Enter elements of the second matrix.

0, 0 : 74

0, 1 : 89

1, 0 : 3

1, 1 : 65

The elements of the second matrix are :

74 89

3 65

The product is :

125 1194

1940 4175

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 21

Q5. a) Write a program to display following pattern:

 1

 232

 34543

 4567654

567898765

Ans.

 Program :-

 Source code :

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int i, s, r, k=0, c=0, j=0;

 printf(“Enter the number of rows : “);

 scanf(“%d”, &r);

 for(i=1 ; i<=r ; i++)

 {

 for(s=1 ; s<=r-i ; s++)

 {

 prinf(“ ”);

 c++;

 }

 while(k != 2*i-1)

 {

 if(c<=r-1)

 {

 printf(“%d”,(i+k));

 c++;

 }

 else

 {

 j++;

 printf(“%d”,(i+k-2*j));

 }

 ++k;

 }

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 22

 j=c=k=0;

 printf(“\n”);

 }

 getch();

 }

 Output :

 Enter the number of rows : 5

 1

 232

 34543

 4567654

567898765

Q5. b) Write user defined function to implement string concatenation.

Ans.

 Program :-

 Source code :

#include<stdio.h>

#include<string.h>

void concat(char[], char[]);

int main() {

 char s1[50], s2[50];

 printf("\nEnter String 1 :");

 gets(s1);

 printf("\nEnter String 2 :");

 gets(s2);

 concat(s1, s2);

 printf("\nConcated string is :%s", s1);

 return (0);

}

void concat(char s1[], char s2[])

{

 int i, j;

 i = strlen(s1);

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 23

 for (j = 0; s2[j] != '\0'; i++, j++)

{

 s1[i] = s2[j];

 }

 s1[i] = '\0';

}

 Output :

Enter String 1 : Prathamesh

Enter String 2 : Padave

Concated string is : PrathameshPadave

Q5. c) Explain need of file data and various modes of files also write program

to create edit copy of file.

Ans.

 File Handling :-

File handling is an important part for any language. File handling

helps you to store data (any type of data) in a controlled manner like for

cookies, for any type of configurations etc. A file represents a sequence of

bytes on the disk where a group of related data is stored. File is created for

permanent storage of data. The fopen() function is used to create a new file

or to open an existing file.

General Syntax:

*fp = FILE *fopen(const char *filename, const char *mode);

Here, *fp is the FILE pointer (FILE *fp), which will hold the reference to

the opened(or created) file. Filename is the name of the file to be opened and

mode specifies the purpose of opening the file. Mode can be of following

types,

 r - opens a text file in reading mode

 w - opens or create a text file in writing mode.

 a - opens a text file in append mode

 r+ - opens a text file in both reading and writing mode

 w+ - opens a text file in both reading and writing mode

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 24

 a+ - opens a text file in both reading and writing mode

 rb - opens a binary file in reading mode

 wb - opens or create a binary file in writing mode

 ab - opens a binary file in append mode

 rb+ - opens a binary file in both reading and writing mode

 wb+ - opens a binary file in both reading and writing mode

 ab+ - opens a binary file in both reading and writing mode

Program :-

Source code :

 /* Program to create edit copy of file */

include <stdio.h>

#include <conio.h>

void main()

{

 FILE *fp ;

 char sub[50], temp[20];

int s, t;

clrscr();

fp=fopen(“Exam.txt”,”w+”);

 printf(“Enter seat number and subject of the candidate : ”) ;

 scanf(“%d %s”, &s, &sub);

 printf(“ Seat No \t Subject \n”);

 rewind(fp);

 fscanf(fp,”%s %d”, &temp, &t);

 printf(“%s %d”, temp, t);

 fclose(fp) ;

 return 0;

}

Output :-

 Enter Seat number and Subject of the student : 2001

 Chemistry

 Seat number Subject

 2001 Chemistry

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 25

Q6. a) Write a program to sort given array in ascending order.

Ans.

 Program :-

 Source code :

//Program to sort given array in ascending order

 #include <stdio.h>

 #include <conio.h>

 void main()

 {

 int i, j, a, n, array[50];

 printf("How many numbers in an array…? \n");

 scanf("%d", &n);

 printf("Enter the numbers. \n");

 for (i = 0; i < n; i++)

 scanf("%d", &array[i]);

for (i = 0; i < n; i++)

 {

 for (j = i + 1; j < n; j++)

 {

 if (number[i] > number[j])

 {

a = number[i];

 number[i] = number[j];

 number[j] = a;

}

}

}

printf("The numbers arranged in ascending order are given

below \n");

 for (i = 0; i < n; ++i)

 printf("%d\n", number[i]);

 getch();

 }

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 26

 Output :

How many numbers in an array…?

5

Enter the numbers.

3

1

456

200

150

The numbers arranged in ascending order are given below

1

3

150

200

456

Q6. b) Write a program for finding sum of series 1+2+3+4+…….upto n terms.

Ans.

 Program :-

 Source code :

 //program to calculate sum of series up to n terms 1 + 2 + 3 +…+n.

#include <stdio.h>

#include <conio.h>

void main()

{

int n,i;

 int sum=0;

 printf("Enter the n i.e. max value of series: ");

 scanf("%d",&n);

 sum = (n * (n + 1)) / 2;

 printf("Sum of the series: ");

 for (i =1 ; i <= n ; i++)

{

 if (i!=n)

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 27

 printf("%d + ",i);

else

 printf("%d = %d ",i,sum);

 }

 getch();

}

 Output :-

Enter the n i.e. max value of series: 5

Sum of the series: 1 + 2 + 3 + 4 + 5 = 15

Q6. c) Draw the flow chart to find roots of a quadratic equation.

Ans.

 Algorithm :-

 Step I : Start.

 Step II : Input a,b,c,del,r1,r2.

 Step III : Print “Enter the value of coefficient of the X^2.”

 Step IV : Read a.

 Step V : Print “Enter the value of coefficient of the X.”

 Step VI : Read b.

 Step VII : Print “Enter the value of constant C.”

 Step VIII : Read c.

 Step IX : del = b X b – 4 X a X c

 Step X : If del is less than zero Then,

 r1 = (-b / (2 X a)) + sqrt (del) / 2 X a

 r2 = (-b / (2 X a)) - sqrt (del) / 2 X a

 Print “Roots are complex and unequal.”

 Print “The roots for the entered values are r1 and r2.”

 Else - if del is greater than zero Then,

 r1 = (-b / (2 X a)) + sqrt (del) / 2 X a

 r2 = (-b / (2 X a)) - sqrt (del) / 2 X a

 Print “Roots are real and unequal.”

 Print “The roots for the entered values are r1 and r2.”

 Else,

 r1 = (-b / (2 X a)) + sqrt (del) / 2 X a

 Print “Roots are real and equal.”

 Print “The root for the entered values is r1.”

 Step XI : Stop

F.E. (Rev. 2016) Sem – II CBCGS SPA DEC,2017

MUQuestionpapers.com Page 28

Flowchart :-

F.E. Sem - 2 CBCGS SPA – MAY 18

Q.1.a) Select the correct option from multiple choice questions. (10 M)

i. Which bitwise operator is used to multiply the number by 2n where n is

number of bits.

A]Bitwise-OR B]Bitwise-AND C]Bitwise Left shift D] Bitwise Right shift

Ans:- C

ii. Which operator has the lowest priority?

A] ++ b] % C] + D] ||

Ans:-D

iii. Which of these is a valid variable declaration?

A]in temp salary; B] float marks_student; C] float roll-no; D] int main;

Ans:-B

iv. What will be the output of the following program?

Void main() {

Double x=28;

Int r;

r=x%5;

printf(“\n r=%d”,r);}

A] r= 3 B] Run time Error C] Compile time Error D] None of the above

Ans:-A

v. What will be the output of following program

Void main() {

 int x[]={10,20,30,40,50};

printf(“\n%d%d%d%d”,x[4], 3[x], x[2], 1[x], x[0]); }

A]Error B}10 20 30 40 50 C] 50 40 30 20 10 D] None of these

Ans:-D

vi. Which of the following is not a keyword of ‘C’?

A]auto B]register C]int D]function

Ans:-D

vii. What will be the output?

Void main() {

Int y;

y=0x10+010+10;

printf(“\ny=%x”,y); }

A] y=34 B] x=34 C] y=22 D] Error

Ans:C

viii. Study the following C program

Void main() {

int a=0;

for(;a;);

a++; }

what will be the value of the variable a, on the execution of above program

A] 1 B] 0 C] -1 D] None of these

Ans:A

ix. Which of the following is used as a string termination character?

A] 0 B]\0 C] /0 D]None of these

Ans:B

x. void main() {

char a[]= “Hello world”;

char *p;

p=a;

printf(“\n%d%d%d%d”,sizeof(a),sizeof(p),strlen(a),strlen(p)); }

A] 11 11 10 10 B] 10 10 10 10 C] 12 12 11 11 D] 12 2 11 11

Ans:D

Q.1.b) State True or False with reason. (10 M)

i. Size of pointer variable is equal to the datatype it points to. True

ii. A float constant cannot be used as a case constant in a switch statement.

True

iii. The statement void p; is valid. True

iv. while(0); is an infinite loop. False

Ans: when the condition is while(0); the control will never enter into the loop

hence there will not be any infinite loop.

v. scanf() function is used to input string having multiple words. True

vi. A function can have any number of return statements. True

vii. In a union, space is allocated to every member individually. False

Ans: A union shares space among its member.

viii. An algorithm is a graphical representation of the logic of a program.

False

Ans: An algorithm is set of structured instruction used to execute the code.

ix. Comments in the program make debugging of the program easier. True

x.There is no difference between ‘\0’ and ‘0’. False

Ans: ‘\0’ is used as a string terminator whereas ‘0’ is number for the

interpreter.

Q.2.a.i) How to create array of structure variable and assign values to its

members? (5 M)

Ans:

1. An array of structure can be declared in the same way as declaring array

of any other data type.

2. For example, an array of the structure student can be declared as shown:

 struct student s[100];

This array can now store information of 100 students.

3. Array of structure must be used when many variables of a structure are

required.

4. Syntax:

Struct structure_name

{

 data_type member1;

 data_type member2;

 -

 -

 data_type member;

};

Q.2.a.ii) Differentiate between struct and union. When is union preferred

over struct? Give on example of each. (5 M)

 Ans:

Sr. NO. Structure Union

1. Memory allotted to structure is
equal to the space require
collectively by all the members of
the structure.

Memory allotted for a union is equal to
the space required by the largest
memory of that union

2. Data is more secured in structure. Data can be corrupted in a union.

3. Structure provide ease of
programming.

Unions are comparatively difficult for
programming.

4. Structures require more memory. Unions require less memory.

5. Structure must be used when
information of all the member
elements of a structure are to be
stored.

Unions must be used when only one of
the member elements of the union is
to be stored.

1. Union is preferred over struct when only one of the member elements of

the union is stored.

Example of structure:

#include<conio.h>

#include<stdio.h>

Struct student

{

 char name[20];

 int roll_no;

 float fees;

};

void main()

{

 Struct student s1;

 clrscr();

 printf(“Enter the student’s name, roll number ”);

 gets(s1.name);

 scanf(“%d”,&s1.roll_no);

 printf(“The student details are as follows: \nName:%s\n

Roll number:%d”,s1.name,s1.roll_no);

 getch();

}

Output:

Enter the student’s name, roll number:John

20

The student details are as follows:

Name:John

Roll number:20

Example of union:

#include<stdio.h>

#include<conio.h>

Union info

{

 char name[20];

};

void main()

{

 Union info i1;

int choice;

clrscr();

printf(“Enter your name”);

scanf(“%s”,i1.name);

printf(“Your name is %s”,i1.name);

getch();

}

Output:

Enter your name:John

Your name is John

Q.2.b.i) WAP to print the sum of following series. (5 M)

1+22+33+………+nn

Ans:

#include<stdio.h>

#include<conio.h>

void main()

{

 int n,sum=0;

 clrscr();

 printf("Enter a number ");

 scanf("%d",&n);

 while(n!=0)

 {

 sum=sum+(n*n);

 n--;

 }

 printf("The sum of the series is %d",sum);

 getch ();

}

Output:

Enter a number 3

The sum of the series is 14

Q.2.b.ii) Compare the following (5 M)

 i. break and continue statements

Ans:

 break statement: The break statement neglects the statement after it in the

loop and transfer the control outside the loop.

Operation of break statement in for loop:

 for(initialization;condition;inc/dec)

 {

 -

 -

 break;

 -

 -

 }

Continue statement: The continue statement also neglects the statement after it in

the loop and transfer the control back to the starting of the loop for next iteration.

Operation of continue statement in for loop:

 For(initialization;condition;inc/dec)

 {

 -

 -

 Continue;

 -

 -

 }

ii. if-else and switch statements:

Ans:

Sr.no If……else Switch

1. In this we can test only one
condition.

In this we can test multiple condition.

2. It can have values based on
constraints.

It can have values based on user choice.

3. In this we cannot have different
conditions.

In this case we can have only one
expression but various value of the same
expression.

4. If else statement is used to evaluate
a condition to be true or false

A switch case statement is used to test for
multiple values of the same variable or
expression like 1,2,3 etc.

Q.3.a) Write a program to calculate number of vowels (a, e, i, o, u) separately in the

entered string. (6 M)

Ans:

#include <stdio.h>

#include<conio.h>

void main()

{

 int c = 0, count = 0,a=0,i=0,e=0,o=0,u=0,A=0,I=0,E=0,O=0,U=0;

 char s[1000];

 clrscr();

 printf("Input a string\n");

 gets(s);

 while (s[c] != '\0')

 {

 if (s[c] == 'a')

 {

 a++;

 printf("\na=%d",a);

 }

 else if (s[c] == 'A')

 {

 A++;

 printf("\nA=%d",A);

 }

 else if (s[c] == 'e')

 {

 e++;

 printf("\ne=%d",e);

 }

 else if (s[c] == 'E')

 {

 E++;

 printf("\nE=%d",E);

 }

 else if (s[c] == 'i')

 {

 i++;

 printf("\ni=%d",i);

 }

 else if (s[c] == 'I')

 {

 I++;

 printf("\nI=%d",I);

 }

 else if (s[c] == 'o')

 {

 o++;

 printf("\no=%d",o);

 }

 else if (s[c] == 'O')

 {

 O++;

 printf("\nO=%d",O);

 }

 else if (s[c] == 'u')

 {

 u++;

 printf("\nu=%d",u);

 }

 else if (s[c] == 'U')

 {

 U++;

 printf("\nU=%d",U);

 }

 count++;

 c++;

 }

 getch();

}

Output:

Input string University

U=1

i=2

e=1

Q.3.b) Predict output of following program segment. (4 M)

i.

main()

{

int a,b,*p1,*p2,x,y;

 clrscr();

 a=48;b=10;p1=&a;p2=&b;

 x=*p1**p2-8;

 *p1=*p1+*p2;

 y=(*p1/ *p2)+20;

 printf("%d%d%d%d%d%d",*p1,*p2,a,b,x,y);

}

Output:

5810581047225

ii)

main()

{

 int x=4, y=9,z;

 clrscr();

 z=x++ + --y+y;

 printf("\n%d%d%d",x,y,z);

 z= --x+x+y--;

 printf("\n%d%d%d",x,y,z);

 getch();

}

Output:

5820

4716

Q.3.c) An electronic component vendor supplies three products: transistors, resistors and

capacitors. The vendor gives a discount of 10% on order of transistor if the order is more

than Rs. 1000. On order of more than Rs. 100 for resistors, a discount of 5% is given and

discount of 10% is given on order for capacitors of value more than Rs. 500. Assume

numeric code 1, 2 and 3 used for transistors, capacitors and resistors respectively. Write a

program that reads the product code and order amount and prints out the net amount

that the customer is required to pay after discount. (Note: Use switch-case) (10 M)

Ans:

#include<stdio.h>

#include<conio.h>

void main()

{

 int choice,n,dis;

 clrscr();

 printf("\n1.Transistor\n2.Capacitor\n3.Resistor\nEnter your choice");

 scanf("%d",&choice);

 printf("Enter the price");

 scanf("%d",&n);

 switch(choice)

 {

 case 1:if(n>1000)

 {

 dis=n/10;

 dis=n-dis;

 printf("The total price after discount is %d",dis);

 }

 else

 {

 dis=n;

 printf("The total price is %d",dis);

 }

 break;

 case 2:if(n>500)

 {

 dis=n/10;

 dis=n-dis;

 printf("The total price after discount is %d",dis);

 }

 else

 {

 dis=n;

 printf("The total price is %d",dis);

 }

 break;

 case 3:if(n>100)

 {

 dis=n/5;

 dis=n-dis;

 printf("The total price after discount is %d",dis);

 }

 else

 {

 dis=n;

 printf("The total price is %d",dis);

 }

 break;

 }

 getch();

}

Output:

1.Transistor

2.Capacitors

3.Resistor

Enter your choice 1

Enter the price 1050

The total price after discount is 945

Q.4.a) What is recursion? WAP using recursion to find the sum of array elements of size n.

 (10 M)

Ans:

1. Recursion: A function that calls itself is called as recursive function and this

technique is called as recursion.

2. A recursive function must definitely have a condition that exits from calling the

function again.

3. Hence there must be a condition that calls the function itself if that condition is

true.

4. If the condition is false then it will exit from the loop of calling itself again.

Program:

#include<conio.h>

#include <stdio.h>

#define MAX_SIZE 100

int sum(int arr[], int start, int len);

void main()

{

 int arr[MAX_SIZE];

 int N, i, sumof_array;

 clrscr();

 printf("Enter size of the array: ");

 scanf("%d", &N);

 printf("Enter elements in the array: ");

 for(i=0; i<N; i++)

 {

 scanf("%d", &arr[i]);

 }

 sumof_array = sum(arr, 0, N);

 printf("Sum of array elements: %d", sumof_array);

 getch();

}

int sum(int arr[], int start, int len)

{

 if(start >= len)

 return 0;

 return (arr[start] + sum(arr, start + 1, len));

}

Output:

Enter size of the array: 10

Enter elements in the array: 1 2 3 4 5 6 7 8 9 10

Sum of array Elements: 55

Q.4.b) Write a C program to (10 M)

i. Create a 2D array [Matrix] [in main function]

ii. Write a function to read 2D array[Matrix]

iii. Write a function that will return true(1) if entered matrix is symmetric or

false(0) is not symmetric.

iv. Print whether entered matrix is symmetric or not [in main function]

Ans:

Program:

#include<stdio.h>

void main()

{

 int m, n, c, d, matrix[10][10], transpose[10][10];

 clrscr();

 printf("Enter the number of rows and columns of matrix\n");

 scanf("%d%d", &m, &n);

 printf("Enter elements of the matrix\n");

 for (c = 0; c < m; c++)

 for (d = 0; d < n; d++)

 scanf("%d", &matrix[c][d]);

 for (c = 0; c < m; c++)

 for (d = 0; d < n; d++)

 transpose[d][c] = matrix[c][d];

 if (m == n)

 {

 for (c = 0; c < m; c++)

 {

 for (d = 0; d < m; d++)

 {

 if (matrix[c][d] != transpose[c][d])

 break;

 }

 if (d != m)

 break;

 }

 if (c == m)

 printf("The matrix is symmetric.\n");

 else

 printf("The matrix isn't symmetric.\n");

 }

 else

 printf("The matrix isn't symmetric.\n");

 getch();

}

Output:

Enter the number of rows and columns of matrix

2 2

Enter elements of matrix

1 2 3 4

The matrix isn’t symmetric.

Q.5.a) implement string copy function STRCOPY (str1,str2) that copies a

string str1 (source) to another string str2 (destination) without using library

function. (5 M)

Ans:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 char s1[100],s2[100],i;

 clrscr();

 printf(“enter string s1: “);

 scanf(“%s”,s1);

 for(i=0;s1[i]!=’\0’;++i)

 {

 s2[i]=s1[i];

 }

 s2[i]=’\0’;

 printf(“string s2: %s”,s2);

 getch();

 }

 Output:

 Enter string s1:program

 String s2: program

Q.5.b) Explain file handling in c in details.[Note: Mention file type, file

 modes, file related functions and its use) (8 M)

Ans:

 There are various types of files like: text file stored with the extension

 “txt”, binary files stored with the extension “bin” etc. For file handling

 or accessing the contents of file, there are certain predefined

 functions available in the c programming language,

 A file represents a sequence of bytes on the disk where a group of

 Related data is stored. File is created for permanent storage of data. C programming

 Language can handle files as stream-oriented data (text) files and system oriented

 Data (binary) files.

 An important thing required to access files is the “FILE pointer”. This pointer is used

 to point to the values stored in the file. A file pointer is hence to be created for

 accessing the files. The syntax for creating a file pointer is a given below:

 FILE *<identifier for pointer>;

 For e.g. FILE *fp;

 Hence in every program we write in this section to access files, we will use this kind

 of pointer declaration. This pointer is used to point the data to be accessed in the

 file i.e. whenever a data is read or written in the file, it is from the location pointed

 by the file pointer “fp”.

 Function and there use:

1. fopen(): This function is used to open a file to be accessed in the program. The

file to be opened is to be passed as a string parameter to the function and also

the mode of opening the file is to be passed as the string to the function.

Hence the syntax of the function with parameters is as given below:

<file pointer identifier>=fopen<”file name>”,<mode of opening the file>”)

For e.g. fp=fopen(“test.txt”,”w”);

The various modes in which file can be opened are as follows

1. “r” indicates that the file is to be opened indicates in the read mode.

2. “w” indicates that the file is to be opened indicates in the write mode.

When a file is opened in write mode the data written in the file overwrites

the previously stored data in the file.

3. ”a” indicates that the file is to be opened in the append mode. In this mode

the data written into the file is appended towards the end of the already

stored data in the file. The earlier stored data remains as it is.

4. “w+” indicates that the file is to be opened in write and read mode.

5. “r+” indicates that the file is to be opened in read and write mode.

2. fclose(): The function is used to close the file opened using the file pointer passed

to the function. The syntax with parameters to call this function is as given

below:

fclose(<file pointer identifier>);

for e.g. fclose(fp);

this statement closes the file opened using the file pointer variable “fp”. It closes

the file opened using the function fopen().

3. feof(): This function returns true or false based on whether the pointer pointing

to the file has reached the end of the file or not. The pointer used to point the

file has to be passed as a parameter to the function feof(). Also the file has to be

opened pointed using the pointer “fp”,before using this function. The syntax of

the function with the parameters is as shown below:

feof(<file pointer identifier>);

4. fputc(): This function is used to put a character type data into the opened file

using the open() function, pointed by a file pointer. The character to be put into

the file as well as the pointer are to be passed as the parameters to this function.

The syntax to call this function along with the parameters to be passed is as

shown below:

fputc<char type data>,<file pointer identifier>);

 for e.g.: fputc(c,fp);

this example will store the character value of the char type data variable. ”c” into

the opened file and pointed by the pointer fp at the position pointed by the

pointer fp in the file.

5. getc(): This function is used to get a character from the file pointed by the

corresponding file pointer passed to the function. It is exactly opposite the

fputc() function. This function brings the character from the file opened and

pointed by the file pointer variable passed to the function. The syntax of the

function call with the parameters to be passed is as given below:

getc(<file pointer identifier>);

For e.g. getc(fp);

This function brings the character type data from the opened file using the

pointer fp; from the location pointed by the pointer “fp” in that file.

6. rewind() : this function is used to rewind or bring the file pointer variable to the

point to the beginning of the file from wherever it is currently pointing in the

file. The syntax of the function call with the parameters to be passed is as given

below:

rewind(<file pointer identifier>);

for e.g.rewind(fp);

this function rewinds or brings back the pointer “fp” to the beginning of the file

from wherever it was pointing in the file opened using the pointer “fp”.

7. Fprintf():This function is used to store the different data types in the file as the

fputc() function is used to store the character in the file. This can be used to store

integers , float, string etc. types of data into the file opened. The function is

similar to printf(),except that it writes to the file instead of the monitor. The

syntax shown below explains the concept:

fprintf(<file pointer identifier>,”<format specifiers>”,<variable names>);

For e.g.: fprintf(fp,”%d”,x);

This function will print or store the value of integer variable “x” in the file opened

using the pointer “fp”. The data will be stored at the location pointed by the

pointer variable “fp”.

8. Fscanf(): The function is used to read the different types of the data as the getc()

Function is used to read a character from the file. This function can be used to

read an integer, float string etc. types of data into the file opened. The function is

similar to scanf(),except that it reads from the file instead of the keyboard. The

syntax shown below explains the concept:

fscanf(<file pointer variable>,”<format specifiers>”,<address of the variables in

which the data is to be read>);

for e.g.: fscanf(fp,”%d”,&x);

Q.5.c) WAP to print all possible combination of 1,2,3 using nested loops.(7 M)

Ans:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i,j,k;

 clrscr();

 for(i=1;i<=3;i++)

 {

 for(j=1;j<=3;j++)

 {

 for(k=1;k<=3;k++)

 printf(“\n%d%d%d”,i,j,k);

 }

 }

 getch();

 }

Output:

 111

 112

 113

 121

 122

 123

 131

 132

 133

 211

 212

 213

 221

 222

 223

 .

 .

 .

 .

 (and so on.)

Q.6.a) WAP to print following pattern for n lines. [Note: range of n is 1-9]

 (5 M)

 1

 121

 12321

 1234321

Ans:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i,j,n;

 clrscr();

 printf(“Enter the number of lines:”);

 scanf(“%d”,&n);

 for(i=1;i<=n;i++)

 {

 for(j=1;j<=n-i;j++)

 {

 printf(“ “);

 }

 for(j=1;j<=i;j++)

 {

 printf(“%d”,j);

 }

 for(j=i-1;j>=1;j--)

 {

 printf(“%d”,j);

 }

 printf(“\n”);

 }

 getch();

 }

Output:

 1

 121

 12321

 1234321

Q.6.b) WAP to print binary equivalent of entered decimal no. (5 M)

Ans:

 #include<stdio.h>

 #include<conio.h>

 #include<math.h>

 void main()

 {

 int n,i;

 clrscr();

 printf(“Enter a number: “);

 scanf(“%d”,&n);

 printf(“Binary form is: “);

 for(i=15;i>=0;i--)

 {

 printf(“%d”,n/(int)(pow(2,i));

 n=n%(int)(pow(2,i));

 }

 getch();

 }

 Output:

 Enter a number:12

 Binary form is:0000000000001100

Q.6.c) what is significance of storage classes? Explain it with relevant

examples. (10 M)

Ans:

The different locations in the computer where we can store data and their accessibility,

initial values etc. very based on the way they are declared. These different ways are

termed as different storage classes.

In C there are for storage classes, namely

1. Automatic

2. Register

3. Static

4. External or global

Let us see these storage classes one by one

1. Automatic storage class

In this case data is stored in memory

The initial value of such a variable is garbage

The scope of the variable is local i.e. limited to the function in which it is defined.

The life of such variables is till the control remains in the particular function where

it is defined.

For e.g.:

Int i; or auto int i;

2. Register storage class

In this case data is stored in CPU register

The initial value of such a variable is garbage.

The scope of the variable is local i.e. limited to the function in which it is defined

The life of such variables is till the control remains in the particular function where

it is defined.

For e.g.:

Register int I;

In this case the data is stored in a small memory inside the processor called its

registers.

The advantage of such storage class is that since the data is in the processor itself,

its access and operation on such data is faster.

There is limitation on the size of the data that can declared to be register storage

class. The data should be such that it doesn’t require more than 4 bytes. Hence

double and long double data types cannot be declared as a register.

Also there is a limitation on the maximum number of variables in a function that

can be a register class. The limitation is that a maximum of 3 register class variable

can be declared in a function.

3. Static storage class

In this case data is stored in a memory

The initial value of such a variable is zero

The scope of the variable is local i.e. limited to the function in which it is defined

The life of such variable is till the program is alive.

For e.g.:

Static int I;

If a variable is declared static, its value remains unchanged even If the function

execution is completed.

When the execution to that function returns, the previous value is retained.

Thus it says the initialization is only once. If you have an initialization statement of a

static member, it will be executed only once i.e. for the first time when this

function is called.

4. External or global storage class

In this case data is stored in memory

The initial value of such a variable is zero.

The scope of the variable is global i.e. it is accessible from anywhere in the

program.

The life such a variable is till the program is alive.

F.E. Sem - 2 CBCGS SPA – MAY 18

Q.1.a) Select the correct option from multiple choice questions. (10 M)

i. Which bitwise operator is used to multiply the number by 2n where n is

number of bits.

A]Bitwise-OR B]Bitwise-AND C]Bitwise Left shift D] Bitwise Right shift

Ans:- C

ii. Which operator has the lowest priority?

A] ++ b] % C] + D] ||

Ans:-D

iii. Which of these is a valid variable declaration?

A]in temp salary; B] float marks_student; C] float roll-no; D] int main;

Ans:-B

iv. What will be the output of the following program?

Void main() {

Double x=28;

Int r;

r=x%5;

printf(“\n r=%d”,r);}

A] r= 3 B] Run time Error C] Compile time Error D] None of the above

Ans:-A

v. What will be the output of following program

Void main() {

 int x[]={10,20,30,40,50};

printf(“\n%d%d%d%d”,x[4], 3[x], x[2], 1[x], x[0]); }

A]Error B}10 20 30 40 50 C] 50 40 30 20 10 D] None of these

Ans:-D

vi. Which of the following is not a keyword of ‘C’?

A]auto B]register C]int D]function

Ans:-D

vii. What will be the output?

Void main() {

Int y;

y=0x10+010+10;

printf(“\ny=%x”,y); }

A] y=34 B] x=34 C] y=22 D] Error

Ans:C

viii. Study the following C program

Void main() {

int a=0;

for(;a;);

a++; }

what will be the value of the variable a, on the execution of above program

A] 1 B] 0 C] -1 D] None of these

Ans:A

ix. Which of the following is used as a string termination character?

A] 0 B]\0 C] /0 D]None of these

Ans:B

x. void main() {

char a[]= “Hello world”;

char *p;

p=a;

printf(“\n%d%d%d%d”,sizeof(a),sizeof(p),strlen(a),strlen(p)); }

A] 11 11 10 10 B] 10 10 10 10 C] 12 12 11 11 D] 12 2 11 11

Ans:D

Q.1.b) State True or False with reason. (10 M)

i. Size of pointer variable is equal to the datatype it points to. True

ii. A float constant cannot be used as a case constant in a switch statement.

True

iii. The statement void p; is valid. True

iv. while(0); is an infinite loop. False

Ans: when the condition is while(0); the control will never enter into the loop

hence there will not be any infinite loop.

v. scanf() function is used to input string having multiple words. True

vi. A function can have any number of return statements. True

vii. In a union, space is allocated to every member individually. False

Ans: A union shares space among its member.

viii. An algorithm is a graphical representation of the logic of a program.

False

Ans: An algorithm is set of structured instruction used to execute the code.

ix. Comments in the program make debugging of the program easier. True

x.There is no difference between ‘\0’ and ‘0’. False

Ans: ‘\0’ is used as a string terminator whereas ‘0’ is number for the

interpreter.

Q.2.a.i) How to create array of structure variable and assign values to its

members? (5 M)

Ans:

1. An array of structure can be declared in the same way as declaring array

of any other data type.

2. For example, an array of the structure student can be declared as shown:

 struct student s[100];

This array can now store information of 100 students.

3. Array of structure must be used when many variables of a structure are

required.

4. Syntax:

Struct structure_name

{

 data_type member1;

 data_type member2;

 -

 -

 data_type member;

};

Q.2.a.ii) Differentiate between struct and union. When is union preferred

over struct? Give on example of each. (5 M)

 Ans:

Sr. NO. Structure Union

1. Memory allotted to structure is
equal to the space require
collectively by all the members of
the structure.

Memory allotted for a union is equal to
the space required by the largest
memory of that union

2. Data is more secured in structure. Data can be corrupted in a union.

3. Structure provide ease of
programming.

Unions are comparatively difficult for
programming.

4. Structures require more memory. Unions require less memory.

5. Structure must be used when
information of all the member
elements of a structure are to be
stored.

Unions must be used when only one of
the member elements of the union is
to be stored.

1. Union is preferred over struct when only one of the member elements of

the union is stored.

Example of structure:

#include<conio.h>

#include<stdio.h>

Struct student

{

 char name[20];

 int roll_no;

 float fees;

};

void main()

{

 Struct student s1;

 clrscr();

 printf(“Enter the student’s name, roll number ”);

 gets(s1.name);

 scanf(“%d”,&s1.roll_no);

 printf(“The student details are as follows: \nName:%s\n

Roll number:%d”,s1.name,s1.roll_no);

 getch();

}

Output:

Enter the student’s name, roll number:John

20

The student details are as follows:

Name:John

Roll number:20

Example of union:

#include<stdio.h>

#include<conio.h>

Union info

{

 char name[20];

};

void main()

{

 Union info i1;

int choice;

clrscr();

printf(“Enter your name”);

scanf(“%s”,i1.name);

printf(“Your name is %s”,i1.name);

getch();

}

Output:

Enter your name:John

Your name is John

Q.2.b.i) WAP to print the sum of following series. (5 M)

1+22+33+………+nn

Ans:

#include<stdio.h>

#include<conio.h>

void main()

{

 int n,sum=0;

 clrscr();

 printf("Enter a number ");

 scanf("%d",&n);

 while(n!=0)

 {

 sum=sum+(n*n);

 n--;

 }

 printf("The sum of the series is %d",sum);

 getch ();

}

Output:

Enter a number 3

The sum of the series is 14

Q.2.b.ii) Compare the following (5 M)

 i. break and continue statements

Ans:

 break statement: The break statement neglects the statement after it in the

loop and transfer the control outside the loop.

Operation of break statement in for loop:

 for(initialization;condition;inc/dec)

 {

 -

 -

 break;

 -

 -

 }

Continue statement: The continue statement also neglects the statement after it in

the loop and transfer the control back to the starting of the loop for next iteration.

Operation of continue statement in for loop:

 For(initialization;condition;inc/dec)

 {

 -

 -

 Continue;

 -

 -

 }

ii. if-else and switch statements:

Ans:

Sr.no If……else Switch

1. In this we can test only one
condition.

In this we can test multiple condition.

2. It can have values based on
constraints.

It can have values based on user choice.

3. In this we cannot have different
conditions.

In this case we can have only one
expression but various value of the same
expression.

4. If else statement is used to evaluate
a condition to be true or false

A switch case statement is used to test for
multiple values of the same variable or
expression like 1,2,3 etc.

Q.3.a) Write a program to calculate number of vowels (a, e, i, o, u) separately in the

entered string. (6 M)

Ans:

#include <stdio.h>

#include<conio.h>

void main()

{

 int c = 0, count = 0,a=0,i=0,e=0,o=0,u=0,A=0,I=0,E=0,O=0,U=0;

 char s[1000];

 clrscr();

 printf("Input a string\n");

 gets(s);

 while (s[c] != '\0')

 {

 if (s[c] == 'a')

 {

 a++;

 printf("\na=%d",a);

 }

 else if (s[c] == 'A')

 {

 A++;

 printf("\nA=%d",A);

 }

 else if (s[c] == 'e')

 {

 e++;

 printf("\ne=%d",e);

 }

 else if (s[c] == 'E')

 {

 E++;

 printf("\nE=%d",E);

 }

 else if (s[c] == 'i')

 {

 i++;

 printf("\ni=%d",i);

 }

 else if (s[c] == 'I')

 {

 I++;

 printf("\nI=%d",I);

 }

 else if (s[c] == 'o')

 {

 o++;

 printf("\no=%d",o);

 }

 else if (s[c] == 'O')

 {

 O++;

 printf("\nO=%d",O);

 }

 else if (s[c] == 'u')

 {

 u++;

 printf("\nu=%d",u);

 }

 else if (s[c] == 'U')

 {

 U++;

 printf("\nU=%d",U);

 }

 count++;

 c++;

 }

 getch();

}

Output:

Input string University

U=1

i=2

e=1

Q.3.b) Predict output of following program segment. (4 M)

i.

main()

{

int a,b,*p1,*p2,x,y;

 clrscr();

 a=48;b=10;p1=&a;p2=&b;

 x=*p1**p2-8;

 *p1=*p1+*p2;

 y=(*p1/ *p2)+20;

 printf("%d%d%d%d%d%d",*p1,*p2,a,b,x,y);

}

Output:

5810581047225

ii)

main()

{

 int x=4, y=9,z;

 clrscr();

 z=x++ + --y+y;

 printf("\n%d%d%d",x,y,z);

 z= --x+x+y--;

 printf("\n%d%d%d",x,y,z);

 getch();

}

Output:

5820

4716

Q.3.c) An electronic component vendor supplies three products: transistors, resistors and

capacitors. The vendor gives a discount of 10% on order of transistor if the order is more

than Rs. 1000. On order of more than Rs. 100 for resistors, a discount of 5% is given and

discount of 10% is given on order for capacitors of value more than Rs. 500. Assume

numeric code 1, 2 and 3 used for transistors, capacitors and resistors respectively. Write a

program that reads the product code and order amount and prints out the net amount

that the customer is required to pay after discount. (Note: Use switch-case) (10 M)

Ans:

#include<stdio.h>

#include<conio.h>

void main()

{

 int choice,n,dis;

 clrscr();

 printf("\n1.Transistor\n2.Capacitor\n3.Resistor\nEnter your choice");

 scanf("%d",&choice);

 printf("Enter the price");

 scanf("%d",&n);

 switch(choice)

 {

 case 1:if(n>1000)

 {

 dis=n/10;

 dis=n-dis;

 printf("The total price after discount is %d",dis);

 }

 else

 {

 dis=n;

 printf("The total price is %d",dis);

 }

 break;

 case 2:if(n>500)

 {

 dis=n/10;

 dis=n-dis;

 printf("The total price after discount is %d",dis);

 }

 else

 {

 dis=n;

 printf("The total price is %d",dis);

 }

 break;

 case 3:if(n>100)

 {

 dis=n/5;

 dis=n-dis;

 printf("The total price after discount is %d",dis);

 }

 else

 {

 dis=n;

 printf("The total price is %d",dis);

 }

 break;

 }

 getch();

}

Output:

1.Transistor

2.Capacitors

3.Resistor

Enter your choice 1

Enter the price 1050

The total price after discount is 945

Q.4.a) What is recursion? WAP using recursion to find the sum of array elements of size n.

 (10 M)

Ans:

1. Recursion: A function that calls itself is called as recursive function and this

technique is called as recursion.

2. A recursive function must definitely have a condition that exits from calling the

function again.

3. Hence there must be a condition that calls the function itself if that condition is

true.

4. If the condition is false then it will exit from the loop of calling itself again.

Program:

#include<conio.h>

#include <stdio.h>

#define MAX_SIZE 100

int sum(int arr[], int start, int len);

void main()

{

 int arr[MAX_SIZE];

 int N, i, sumof_array;

 clrscr();

 printf("Enter size of the array: ");

 scanf("%d", &N);

 printf("Enter elements in the array: ");

 for(i=0; i<N; i++)

 {

 scanf("%d", &arr[i]);

 }

 sumof_array = sum(arr, 0, N);

 printf("Sum of array elements: %d", sumof_array);

 getch();

}

int sum(int arr[], int start, int len)

{

 if(start >= len)

 return 0;

 return (arr[start] + sum(arr, start + 1, len));

}

Output:

Enter size of the array: 10

Enter elements in the array: 1 2 3 4 5 6 7 8 9 10

Sum of array Elements: 55

Q.4.b) Write a C program to (10 M)

i. Create a 2D array [Matrix] [in main function]

ii. Write a function to read 2D array[Matrix]

iii. Write a function that will return true(1) if entered matrix is symmetric or

false(0) is not symmetric.

iv. Print whether entered matrix is symmetric or not [in main function]

Ans:

Program:

#include<stdio.h>

void main()

{

 int m, n, c, d, matrix[10][10], transpose[10][10];

 clrscr();

 printf("Enter the number of rows and columns of matrix\n");

 scanf("%d%d", &m, &n);

 printf("Enter elements of the matrix\n");

 for (c = 0; c < m; c++)

 for (d = 0; d < n; d++)

 scanf("%d", &matrix[c][d]);

 for (c = 0; c < m; c++)

 for (d = 0; d < n; d++)

 transpose[d][c] = matrix[c][d];

 if (m == n)

 {

 for (c = 0; c < m; c++)

 {

 for (d = 0; d < m; d++)

 {

 if (matrix[c][d] != transpose[c][d])

 break;

 }

 if (d != m)

 break;

 }

 if (c == m)

 printf("The matrix is symmetric.\n");

 else

 printf("The matrix isn't symmetric.\n");

 }

 else

 printf("The matrix isn't symmetric.\n");

 getch();

}

Output:

Enter the number of rows and columns of matrix

2 2

Enter elements of matrix

1 2 3 4

The matrix isn’t symmetric.

Q.5.a) implement string copy function STRCOPY (str1,str2) that copies a

string str1 (source) to another string str2 (destination) without using library

function. (5 M)

Ans:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 char s1[100],s2[100],i;

 clrscr();

 printf(“enter string s1: “);

 scanf(“%s”,s1);

 for(i=0;s1[i]!=’\0’;++i)

 {

 s2[i]=s1[i];

 }

 s2[i]=’\0’;

 printf(“string s2: %s”,s2);

 getch();

 }

 Output:

 Enter string s1:program

 String s2: program

Q.5.b) Explain file handling in c in details.[Note: Mention file type, file

 modes, file related functions and its use) (8 M)

Ans:

 There are various types of files like: text file stored with the extension

 “txt”, binary files stored with the extension “bin” etc. For file handling

 or accessing the contents of file, there are certain predefined

 functions available in the c programming language,

 A file represents a sequence of bytes on the disk where a group of

 Related data is stored. File is created for permanent storage of data. C programming

 Language can handle files as stream-oriented data (text) files and system oriented

 Data (binary) files.

 An important thing required to access files is the “FILE pointer”. This pointer is used

 to point to the values stored in the file. A file pointer is hence to be created for

 accessing the files. The syntax for creating a file pointer is a given below:

 FILE *<identifier for pointer>;

 For e.g. FILE *fp;

 Hence in every program we write in this section to access files, we will use this kind

 of pointer declaration. This pointer is used to point the data to be accessed in the

 file i.e. whenever a data is read or written in the file, it is from the location pointed

 by the file pointer “fp”.

 Function and there use:

1. fopen(): This function is used to open a file to be accessed in the program. The

file to be opened is to be passed as a string parameter to the function and also

the mode of opening the file is to be passed as the string to the function.

Hence the syntax of the function with parameters is as given below:

<file pointer identifier>=fopen<”file name>”,<mode of opening the file>”)

For e.g. fp=fopen(“test.txt”,”w”);

The various modes in which file can be opened are as follows

1. “r” indicates that the file is to be opened indicates in the read mode.

2. “w” indicates that the file is to be opened indicates in the write mode.

When a file is opened in write mode the data written in the file overwrites

the previously stored data in the file.

3. ”a” indicates that the file is to be opened in the append mode. In this mode

the data written into the file is appended towards the end of the already

stored data in the file. The earlier stored data remains as it is.

4. “w+” indicates that the file is to be opened in write and read mode.

5. “r+” indicates that the file is to be opened in read and write mode.

2. fclose(): The function is used to close the file opened using the file pointer passed

to the function. The syntax with parameters to call this function is as given

below:

fclose(<file pointer identifier>);

for e.g. fclose(fp);

this statement closes the file opened using the file pointer variable “fp”. It closes

the file opened using the function fopen().

3. feof(): This function returns true or false based on whether the pointer pointing

to the file has reached the end of the file or not. The pointer used to point the

file has to be passed as a parameter to the function feof(). Also the file has to be

opened pointed using the pointer “fp”,before using this function. The syntax of

the function with the parameters is as shown below:

feof(<file pointer identifier>);

4. fputc(): This function is used to put a character type data into the opened file

using the open() function, pointed by a file pointer. The character to be put into

the file as well as the pointer are to be passed as the parameters to this function.

The syntax to call this function along with the parameters to be passed is as

shown below:

fputc<char type data>,<file pointer identifier>);

 for e.g.: fputc(c,fp);

this example will store the character value of the char type data variable. ”c” into

the opened file and pointed by the pointer fp at the position pointed by the

pointer fp in the file.

5. getc(): This function is used to get a character from the file pointed by the

corresponding file pointer passed to the function. It is exactly opposite the

fputc() function. This function brings the character from the file opened and

pointed by the file pointer variable passed to the function. The syntax of the

function call with the parameters to be passed is as given below:

getc(<file pointer identifier>);

For e.g. getc(fp);

This function brings the character type data from the opened file using the

pointer fp; from the location pointed by the pointer “fp” in that file.

6. rewind() : this function is used to rewind or bring the file pointer variable to the

point to the beginning of the file from wherever it is currently pointing in the

file. The syntax of the function call with the parameters to be passed is as given

below:

rewind(<file pointer identifier>);

for e.g.rewind(fp);

this function rewinds or brings back the pointer “fp” to the beginning of the file

from wherever it was pointing in the file opened using the pointer “fp”.

7. Fprintf():This function is used to store the different data types in the file as the

fputc() function is used to store the character in the file. This can be used to store

integers , float, string etc. types of data into the file opened. The function is

similar to printf(),except that it writes to the file instead of the monitor. The

syntax shown below explains the concept:

fprintf(<file pointer identifier>,”<format specifiers>”,<variable names>);

For e.g.: fprintf(fp,”%d”,x);

This function will print or store the value of integer variable “x” in the file opened

using the pointer “fp”. The data will be stored at the location pointed by the

pointer variable “fp”.

8. Fscanf(): The function is used to read the different types of the data as the getc()

Function is used to read a character from the file. This function can be used to

read an integer, float string etc. types of data into the file opened. The function is

similar to scanf(),except that it reads from the file instead of the keyboard. The

syntax shown below explains the concept:

fscanf(<file pointer variable>,”<format specifiers>”,<address of the variables in

which the data is to be read>);

for e.g.: fscanf(fp,”%d”,&x);

Q.5.c) WAP to print all possible combination of 1,2,3 using nested loops.(7 M)

Ans:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i,j,k;

 clrscr();

 for(i=1;i<=3;i++)

 {

 for(j=1;j<=3;j++)

 {

 for(k=1;k<=3;k++)

 printf(“\n%d%d%d”,i,j,k);

 }

 }

 getch();

 }

Output:

 111

 112

 113

 121

 122

 123

 131

 132

 133

 211

 212

 213

 221

 222

 223

 .

 .

 .

 .

 (and so on.)

Q.6.a) WAP to print following pattern for n lines. [Note: range of n is 1-9]

 (5 M)

 1

 121

 12321

 1234321

Ans:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i,j,n;

 clrscr();

 printf(“Enter the number of lines:”);

 scanf(“%d”,&n);

 for(i=1;i<=n;i++)

 {

 for(j=1;j<=n-i;j++)

 {

 printf(“ “);

 }

 for(j=1;j<=i;j++)

 {

 printf(“%d”,j);

 }

 for(j=i-1;j>=1;j--)

 {

 printf(“%d”,j);

 }

 printf(“\n”);

 }

 getch();

 }

Output:

 1

 121

 12321

 1234321

Q.6.b) WAP to print binary equivalent of entered decimal no. (5 M)

Ans:

 #include<stdio.h>

 #include<conio.h>

 #include<math.h>

 void main()

 {

 int n,i;

 clrscr();

 printf(“Enter a number: “);

 scanf(“%d”,&n);

 printf(“Binary form is: “);

 for(i=15;i>=0;i--)

 {

 printf(“%d”,n/(int)(pow(2,i));

 n=n%(int)(pow(2,i));

 }

 getch();

 }

 Output:

 Enter a number:12

 Binary form is:0000000000001100

Q.6.c) what is significance of storage classes? Explain it with relevant

examples. (10 M)

Ans:

The different locations in the computer where we can store data and their accessibility,

initial values etc. very based on the way they are declared. These different ways are

termed as different storage classes.

In C there are for storage classes, namely

1. Automatic

2. Register

3. Static

4. External or global

Let us see these storage classes one by one

1. Automatic storage class

In this case data is stored in memory

The initial value of such a variable is garbage

The scope of the variable is local i.e. limited to the function in which it is defined.

The life of such variables is till the control remains in the particular function where

it is defined.

For e.g.:

Int i; or auto int i;

2. Register storage class

In this case data is stored in CPU register

The initial value of such a variable is garbage.

The scope of the variable is local i.e. limited to the function in which it is defined

The life of such variables is till the control remains in the particular function where

it is defined.

For e.g.:

Register int I;

In this case the data is stored in a small memory inside the processor called its

registers.

The advantage of such storage class is that since the data is in the processor itself,

its access and operation on such data is faster.

There is limitation on the size of the data that can declared to be register storage

class. The data should be such that it doesn’t require more than 4 bytes. Hence

double and long double data types cannot be declared as a register.

Also there is a limitation on the maximum number of variables in a function that

can be a register class. The limitation is that a maximum of 3 register class variable

can be declared in a function.

3. Static storage class

In this case data is stored in a memory

The initial value of such a variable is zero

The scope of the variable is local i.e. limited to the function in which it is defined

The life of such variable is till the program is alive.

For e.g.:

Static int I;

If a variable is declared static, its value remains unchanged even If the function

execution is completed.

When the execution to that function returns, the previous value is retained.

Thus it says the initialization is only once. If you have an initialization statement of a

static member, it will be executed only once i.e. for the first time when this

function is called.

4. External or global storage class

In this case data is stored in memory

The initial value of such a variable is zero.

The scope of the variable is global i.e. it is accessible from anywhere in the

program.

The life such a variable is till the program is alive.

STUCTURED PROGRAMMING APPROACH (MAY 19)

Q.1)

a) Attempt the Multiple Choice Questions (6 M)

i. #include<stdio.h>

int main()

{

 int a=0;

 a=a++ + a++ - a++ + ++a;

 printf(“%d”,a);

 return 0;

}

The output of above program is

(a) 2

(b) 90

(c) 3

(d) Error

 Ans: a) 2

ii. Which of the following operator can be used to access value at address stored

in a pointer variable?

(a) *

(b) @

(c) &

(d) &&

Ans: a) *

iii. In C programming which of the operator have the highest precedence

(a) Relational

(b) Arithmetic

(c) Bitwise

(d) Logical

Ans: b) Arithmetic

iv. Which of the following are themselves a collection of different data types?

(a) String

(b) 2D arrays

(c) Structures

(d) Char

Ans: c) Structures

v. If x and b are the float variables what is the value of x when x=sizeof(b).

(a) 2

(b) 3

(c) 4

(d) Null

Ans: c) 4

vi. The default value of static storage class variable is

(a) Zero

(b) Garbage

(c) One

(d) None of the above

Ans: a) Zero

b) Find the output of following (4 M)

i. #include<stdio.h>

int main()

{

 int a=1;

 do{

 a++;

 ++a;

 }while(a++>25);

 printf(“%d\n”,a);

 return 0;

}

 Ans: 4

ii. #include<stdio.h>

int main()

{

 int x;

 x=10;

 if(x>10)

 x-=10;

 else if(x>=0)

 x+=00;

 else if(x)

 x+=10;

 else

 x-=10;

 printf(“%d\n”,x);

 return 0;

}

Ans: 10

c) Convert the following (6 M)

i. 153 from base 10 to Hexadecimal.

Ans:

 16 153

 9 9

 9

Hence, (153)10 = (99)16

ii. 1100 1101 1001 1011 from base 2 to decimal.

Ans:

1*215+1*214+0*213+0*212+1*211+1*210+0*29+1*28+1*27+0*26+0*25+1*24+1*23+

0*22+1*21+1*20

= 32768+16384+0+0+2048+1024+0+256+128+0+0+16+8+0+2+1

=52635

iii. 143 from base 8 to decimal.

Ans:

 (143)8 = 1*82 + 4*81 + 3*80
 = 64+32+3

 = 99

 (143)8 = (99)10

d) Differentiate between Structure and Union

Ans:

Sr.

NO.

 Structure Union

1. Memory allotted to structure is

equal to the space require

collectively by all the members

of the structure.

Memory allotted for a union is equal

to the space required by the largest

memory of that union

2. Data is more secured in

structure.

Data can be corrupted in a union.

3. Structure provide ease of

programming.

Unions are comparatively difficult

for programming.

4. Structures require more memory. Unions require less memory.

5. Structure must be used when

information of all the member

elements of a structure are to be

stored.

Unions must be used when only one

of the member elements of the union

is to be stored.

Q.2)

a) What is recursion? Write a program using recursion to calculate value of

Z=XY. (8 M)

Ans:

1. Recursion: A function that calls itself is called as recursive function and this

technique is called as recursion.

2. A recursive function must definitely have a condition that exits from calling the

function again.

3. Hence there must be a condition that calls the function itself if that condition is

true.

4. If the condition is false then it will exit from the loop of calling itself again.

Program:

#include <stdio.h>

int power(int n1, int n2);

int main()

{

 int base, powerRaised, result;

 printf("Enter base number: ");

 scanf("%d",&base);

 printf("Enter power number: ");

 scanf("%d",&powerRaised);

 result = power(base, powerRaised);

 printf("%d^%d = %d", base, powerRaised, result);

 return 0;

}

int power(int base, int powerRaised)

{

 if (powerRaised != 0)

 return (base*power(base, powerRaised-1));

 else

 return 1;

}

Output:

Enter base number: 3

Enter power number: 4

3^4 = 81

b) Write a function to reverse a 3 digit number. (6 M)

Ans:

Program:

#include <stdio.h>

int main()

{

 int n, reverse = 0;

 printf("Enter a number to reverse:\n");

 scanf("%d", &n);

 while (n != 0)

 {

 reverse = reverse * 10;

 reverse = reverse + n%10;

 n = n/10;

 }

 printf("Reverse of entered number is = %d\n", reverse);

 return 0;

}

Output:

Enter a number to reverse : 123

Reverse of entered number is = 321

c) Write a program to display following pattern (6 M)

 0

 0 1

 0 1 0

 0 1 0 1

0 1 0 1 0

Ans:

Program:

#include<stdio.h>

int main()

{

 int i,j,k;

 for(i=0 ; i<=4 ; i++)

 {

 for(j=4 ; j > i ; j--)

 printf(" ");

 for(k=0; k<=i ; k++)

 {

 if(k%2 == 0)

 printf("0");

 else

 printf("1");// else 1

 }

 printf("\n");

 }

 return 0;

}

Output:

 0

 0 1

 0 1 0

 0 1 0 1

0 1 0 1 0

Q.3)

a) Write a program to find the frequency of digit in a set of numbers and

remove duplicates from an array. For ex. Array A={1,2,3,4,2,5,2}

frequency of 2 is 3 and resultant array is A={1,2,3,4,5} (10 M)

Ans:

#include<stdio.h>

#include<conio.h>

void main()

{

int a[7]={1,2,3,4,2,5,2};

int b[10];

int i,j,count=0;

clrscr();

for(i=0;i<6;i++)

{

 for(j=0;j<count;j++)

 {

 if(a[i]==b[j])

 break;

 }

 if(j==count)

 {

 b[count] = a[i];

 count++;

 }

 }

 for(i=0;i<count;i++)

 printf("%d",b[i]);

 getch();

}

Output:

12345

b) Explain the concept of nested structure? Declare a structure to enter

employee Information like name, id, salary, date of joining. Use nested

structure to get the address of an employee. Write a program to read 10

records and display them. (10 M)

Ans:

 If one of the members of structure is also a structure, then such a structure is

called as a nested structure.

 The structure variables can be a normal structure variable or a pointer variable

to access the data.

 The syntax of a nested structure can be as given below :

struct structure_name

{

data_type variable_name;

-

struct

{

data_type variable_name;

-

-

} internal_structure_name;

-

-

};

Program:

#include<stdio.h>

#include<conio.h>

struct Employee

{

 name[50];

 int id;

 int salary;

 char doj[50];

 struct

 {

 char add[50];

 }address;

};

void main()

{

 struct Employee e[100];

 int n,i;

 clrscr();

 printf("Enter the number of Employee");

 scanf("%d",&n);

 for(i=0;i<=n-1;i++)

 {

 printf("\nEnter ID,Name,Date of joining, Salary, Address of employee");

scanf("%d%s%s%d%s",&e[i].id,&e[i].name,&e[i].doj,&e[i].salary,&e[i].addre

ss.add);

 }

 printf("\nID\t\tName\t\tDOJ\t\tSalary\t\tAddress\n");

 printf("--");

 for(i=0;i<=n-1;i++)

 {

printf("\n%d\t\t%s\t\t%s\t\t%d\t\t%s\n",e[i].id,e[i].name,e[i].doj,e[i].salary,e[i].

address.add);

 }

 getch();

}

Output:

Enter number of employee 10

Enter ID, Name, Date of joining, Salary, Address of employee 101

John

22Aug2017

20000

London

Enter ID, Name, Date of joining, Salary, Address of employee 102

Sam

20Aug2017

20000

U.S.

Enter ID, Name, Date of joining, Salary, Address of employee 103

Miller

25Aug2017

20000

U.S.

Enter ID, Name, Date of joining, Salary, Address of employee 104

Dale

22Sept2017

20000

Dubai

Enter ID, Name, Date of joining, Salary, Address of employee 105

Smith

12Aug2017

20000

London

Enter ID, Name, Date of joining, Salary, Address of employee 106

Jam

22Aug2017

20000

U.K.

Enter ID, Name, Date of joining, Salary, Address of employee 107

David

22Oct2017

20000

Australia

Enter ID, Name, Date of joining, Salary, Address of employee 108

Dhoni

22Dec2017

20000

India

Enter ID, Name, Date of joining, Salary, Address of employee 109

Johny

22Aug2017

20000

Dubai

Enter ID, Name, Date of joining, Salary, Address of employee 110

Kohli

22Jan2018

50000

India

Enter ID, Name, Date of joining, Salary, Address of employee 101

Rohit

22Nov2018

20000

India

ID Name Date of joining Salary Address

101 John 22Aug2017 20000 London

102 Sam 20Aug2017 20000 U.S.

103 Miller 25Aug2017 20000 U.S.

104 Dale 22Sept2017 20000 Dubai

105 Smith 12Aug2017 20000 London

106 David 22Oct2017 20000 Australia

107 Dhoni 22Dec2017 20000 India

108 Johny 22Aug2017 20000 Dubai

109 kohli 22Jan2018 50000 India

110 Rohit 22Nov2017 20000 India

Q.4)

a) Explain strcat() & strcpy() with example. Also write a program to check

whether entered string is palindrome or not without using inbuilt functions.

(10 M)

Ans:

strcat() function:

 This function concatenates (joins) the two string variables passed to it. It

returns a string of the combination of the two in the first string variable.

Syntax: strcat(str1,str2)

Example: strcat(a,b); This will concatenate string a & b.

strcpy() function:

 This function copies the second string into the first string passed to the function.

 The second string remains unchanged. Only the first string is changed and gets a

copy of the second string.

Syntax: strcpy(str1,str2)

Example: strcpy(b,a); This will copy the string from a to b.

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

 char text[100];

 int begin, middle, end, length = 0;

 clrscr();

 printf("Enter a String");

 gets(text);

 while (text[length] != '\0')

 length++;

 end = length - 1;

 middle = length/2;

 for (begin = 0; begin < middle; begin++)

 {

 if (text[begin] != text[end])

 {

 printf("Entered string is not a palindrome.\n");

 break;

 }

 end--;

 }

 if (begin == middle)

 printf("Entered string is Palindrome.\n");

 getch();

}

Output:

Enter a string nitin

Entered string is Palindrome.

b) Differentiate between call by value and call by reference. Write a

program to calculate factorial of a number using call by reference.

 (10M)

Ans:

Call by Value Call by Reference

In this case the value of the parameters

is passed to the caller function.

In this case the reference of the variable

is passed to the function by passing the

address of parameters.

In this case the actual parameters are not

accessible by the called function.

In this case, since the address of the

variables are available, the called

function can access the actual

parameters.

This is implemented by using simple

variable names.

This is implemented by the use of

pointer variables.

Hence the actual parameters remain

unchanged in case of the call by value.

Hence the actual parameters can be

altered if required in case of the call by

reference method.

Program:

#include<stdio.h>

#include<conio.h>

void fact(int,int*,int*);

void main()

{

int a,fac,sqr;

clrscr();

printf("Enter the number: ");

scanf("%d",&a);

fact(a,&fac,&sqr);

printf("Factorial = %d.\n",fac);

getch();

}

void fact(int x,int *y,int *z)

{

int i;

*y=1;

for(i=1;i<=x;i++)

y=i;

}

Output:

Enter the number: 4

Factorial = 24.

Q.5)

a) What is file? Explain the functions available for reading & Writing data of

files? Write a program to take student information from user and store it in

file. (10 M)

Ans:

 For file handling or accessing the contents of file, there are certain predefined

functions available in the C programming language.

 An important thing required to access files is the "FILE pointer". This pointer is

used to point to the values stored in the file. A file pointer is hence to be created

for accessing the files. The syntax for creating a file pointer is as given below:

FILE *<identifier for pointer>; For e.g. FILE *fp;

 Hence in every program we write in this section to access files, we will use this

kind of pointer declaration. This pointer is used to point the data to be accessed in

the file i.e. whenever a data is read or written in the file, it is from the location

pointed by the file pointer "fp".

 File operations are as follows:

1. fopen(): This function is used to open a file to be accessed in the program.

 The file to be opened is to be passes as a string parameter to the

function and also the mode of opening the file is to be passed as the

string to the function.

 Hence the syntax of the function with parameters is as given below :

<file pointer identifier> = fopen("<file name>", " <mode of opening the

file>")

 For e.g. fp=fopen("test.txt","w"); This example statement opens the file

"test.txt" in write mode and the pointer used along with the function to

read/write is the file pointer "fp".

 The various modes in which a file can be opened are as listed below :

I. "r" indicates that the file is to be opened indicates in the read

mode.

II. "w" indicates that the file is to be opened indicates in the write

mode. When a file is opened in write mode the data written in the

file overwrites the previously stored data in the file.

III. "a" indicates that the file is to be opened in the append mode. In

this mode the data written into the file is appended towards the

end of the already stored data in the file. The earlier stored data

remains as it is.

IV. "w+" indicates that the file is to be opened in write and read

mode (v) "r+" indicates that the file is to be opened in read and

write mode.

2. fclose(): This function is used to close the file opened using the file pointer

passed to the function.

 The syntax with parameters to call this function is as given below :

fclose(<file pointer identifier>);

 For e.g. fclose(fp);

3. fputc(): This function is used to put a character type data into the opened file

using the fopen() function, pointed by a file pointer.

 The syntax to call this function along with the parameters to be passed is as

shown below : fputc(<char type data>, <file pointer identifier>);

 For e.g. : fputc(c,fp); This example will store the character value of the char

type data variable "c" into the opened file and pointed by the file pointer fp, at

the position pointed by the pointer fp in the file.

4. getc(): This function is used to get a character from the file pointed by the

corresponding file pointer passed to the function.

 It is exactly opposite the fputc() function. This function brings the

character from the file opened and pointed by the file pointer variable

passed to the function.

 The syntax of the function call with the parameters to be passed is as

given below :getc(<file pointer identifier>);

 For e.g. getc(fp);

Program:

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

int main()

{

 int roll,i;

 FILE *fptr;

 char na[20],addr[20];

 clrscr();

 fptr = fopen("C:\\TURBOC3\\BIN\\abc.txt","w");

 if(fptr == NULL)

 {

 printf("Error!");

 exit(1);

 }

 printf("Enter Roll no., Name and Address of student: ");

 scanf("%d%s%s",&roll,&na[i],&addr[i]);

 fprintf(fptr,"Roll no: %d\n Name: %s\n, Address %s",roll,na[i],addr[i]);

 fclose(fptr);

 getch();

}

b) Write a program to calculate sum of diagonal elements of matrix.

 1 2 3

 5 9 8

 1 4 7

 Calculate the sum of diagonal elements = 3+9+1 =13. (10 M)

Ans:

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

 int mat[12][12];

 int i,j,row,col,sum=0;

 printf("Enter the number of rows and columns for 1st matrix\n");

 scanf("%d%d",&row,&col);

 printf("Enter the elements of the matrix\n");

 for(i=0;i<row;i++)

 {

 for(j=0;j<col;j++)

 {

 scanf("%d",&mat[i][j]);

 }

 }

 printf("The matrix\n");

 for(i=0;i<row;i++)

 {

 for(j=0;j<col;j++)

 {

 printf("%d\t",mat[i][j]);

 }

 printf("\n");

 }

 for(i=0;i<row;i++)

 {

 for(j=0;j<col;j++)

 {

 if(i==j)

 {

 sum=sum+mat[i][j];

 }

 }

 }

 printf("The sum of diagonal elements of a square matrix = %d\n",sum);

 getch();

}

Output:

Enter the number of rows and columns for matrix

3

3

Enter the elements of the matrix

1

2

3

4

5

6

7

8

9

The Matrix

1 2 3

4 5 6

7 8 9

The sum of the diagonal element of a square matrix = 15

Q.6)

a) Explain storage classes with example. (10 M)

Ans:

 The different locations in the computer where we can store data and their

accessibility, initial values etc. vary based on the way they are declared. These

different ways are termed as different storage classes.

 In C, we have four storage classes, namely

1. Automatic

2. Register

3. Static

4. External or Global

 Let us see these storage classes one by one

1. Automatic storage class

 In this case data is stored in memory

 The initial value of such a variable is garbage.

 The scope of the variable is local i.e. limited to the function in which it is defined.

 The life of such variables is till the control remains in the particular function

where it is defined.

 For e.g.:

int i; or auto int i;

 In all our programs till now we have been using the automatic storage class for

our variables.

2. Register storage class

 In this case data is stored in CPU register

 The initial value of such a variable is garbage.

 The scope of the variable is local i.e. limited to the function in which it is defined.

 The life of such variables is till the control remains in the particular function

where it is defined.

 For e.g.:

register int i;

 In this case the data is stored in a small memory inside the processor called as its

registers.

 The advantage of such storage class is that since the data is in the processor itself,

its access and operations on such data is faster.

 There is a limitation on the size of the data that can be declared to be register

storage class. The data should be such that it doesn't require more than 4 bytes.

Hence double and long double data types cannot be declared as register.

 Also there is a limitation on the maximum number of variables in a function that

can be of register class. The limitation is that a maximum of 3 register class

variable can be declared in a function.

3. Static storage class

 In this case data is stored in memory

 The initial value of such a variable is zero.

 The scope of the variable is local i.e. limited to the function in which it is defined.

 The life of such variables is till the program is alive.

 For e.g. :

static int i;

 If a variable is declared static, its value remains unchanged even if the function

execution is completed.

 When the execution to that function returns, the previous value is retained.

 Thus it says the initialization is only once. If you have an initialization statement

of a static member, it will be executed only once i.e. for the first time when this

function is called.

 Example of register storage class: Addition of Two numbers

#include<stdio.h>

int main()

{

int num1,num2;

register int sum;

printf("\nEnter the Number 1 : ");

scanf("%d",&num1);

printf("\nEnter the Number 2 : ");

scanf("%d",&num2);

sum = num1 + num2;

printf("\nSum of Numbers : %d",sum);

return(0);

}

b) Write a program to find the greatest number among three entered number

using ternary operator. (4 M)

Ans:

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

 int a,b,c,greatest;

 clrscr();

 printf("Enter three numbers:\n");

 scanf("%d%d%d",&a,&b,&c);

 greatest = a>b?(a>c ? a:c) : (b>c?b:c);

 printf("The greatest Number is: %d", greatest);

 getch();

}

Output:

Enter three numbers:

4

5

3

The greatest Number is: 5

c) Write a program to calculate the sum of series

 x-x/2!+X/3!-x/4!..........x/n! (6 M)

Ans:

Program:

#include <math.h>

#include <stdio.h>

void main()

{

 int n,x,fact=1,series,i,se;

 clrscr();

 printf("Enter the value of n:");

 scanf("%d",&n);

 printf("Enter the value of x:");

 scanf("%d",&x);

 for(i=1;i<=n-1;i++)

 {

 fact = fact*i;

 if(i%2==0)

 {

 se= -x/i*fact;

 series= x+se;

 }

 }

 printf("The result of series is: %d",series);

 getch();

}

Output:

Enter the value of n: 5

Enter the value of x: 8

The result of series is: -40

MUQuestionPapers.com 1

STUCTURED PROGRAMMING APPROACH (DEC 19)

 Q.P.CODE: 76907

Q.1.a) Attempt the Multiple choice Questions. (6 M)

i. The format identifier ‘%i’ is also used for ______ data type?

a) Char b) int c) double d) float

Ans: b) int

ii. Which keyword can be used for coming out of recursion?

a) Break b) exit c) return d) all of above

Ans: b) exit

iii. What will happen if in a C program you assign a value to an array

element whose subscript exceeds the size of array?

a) The element will be set to 0

b) The compiler would report an error

c) The program may crash if some important data gets overwritten

d) The array size would appropriately grow.

Ans: d) the array size would appropriately grow

iv. A pointer is

a) A keyword used to create variable

b) A variable that stores address of an instruction

c) A variable that stores address of other variable

d) All of the above

Ans: c) A variable that stores address of other variable.

v. In which order do the following gets evaluated

1. Relational

2. Arithmetic

3. Logical

4. Assignment

a) 2134 b) 1234 c) 4321 d) 3214

Ans: a) 2134

vi. Which of the following cannot a be structure member?

MUQuestionPapers.com 2

a) Another structure b) Function c) Array d) None of the mentioned

Ans: a) Another structure.

b) Find the output of the following: (4 M)

i. #include<stdio.h>

Void main()

{

 int c;

 for(c=1;c<=5;)

 printf(“%d”,++c);

}

Ans:
2 3 4 5 6

ii. How many ‘x’ are printed by the following code?

#include<stdio.h>

Void main()

{

 Int i=5;

 While(i-->0)

 Printf(“x”);

 Printf(“x”);

}

Ans: 6

MUQuestionPapers.com 3

c) Draw a flowchart for printing the sum of even terms contained within

the numbers 0-20. (4 M)

Ans:

d) Solve the following (6 m)

i. Convert 238 decimal to octal

Ans:

8 238

 8 29 6

 3 8 5

 3

Then, when we put the remainders together in reverse order, we get the answer. The

decimal number 238 converted to octal is therefore: 356.

MUQuestionPapers.com 4

ii. Convert A3D Hexadecimal to decimal

Ans:

(A3D)₁₆ = (10 × 16²) + (3 × 16¹) + (13 × 16⁰) = (2621)₁₀

Q.2)

a) Distinguish Between (6 M)

a) While and do-while loop

Ans:

While Loop Do-While Loop
Condition is checked first then
statement(s) is executed.

Statement(s) is executed atleast once,
thereafter condition is checked.

It might occur statement(s) is executed
zero times, If condition is false.

At least once the statement(s) is
executed.

No semicolon at the end of while.
while(condition)

Semicolon at the end of while.
while(condition);

If there is a single statement, brackets
are not required.

Brackets are always required.

Variable in condition is initialized before
the execution of loop.

variable may be initialized before or
within the loop.

while loop is entry controlled loop. do-while loop is exit controlled loop.

while(condition)
{ statement(s); }

do { statement(s); }
while(condition);

ii) break and continue

Ans:

Break Continue
A break can appear in both switch and
loop (for, while, do) statements.

A continue can appear only in loop
(for, while, do) statements.

A break causes the switch or loop
statements to terminate the moment it
is executed. Loop or switch ends
abruptly when break is encountered.

A continue doesn't terminate the loop,
it causes the loop to go to the next
iteration. All iterations of the loop are
executed even if continue is
encountered. The continue statement is
used to skip statements in the loop that
appear after the continue.

The break statement can be used in
both switch and loop statements.

The continue statement can appear only
in loops. You will get an error if this
appears in switch statement.

MUQuestionPapers.com 5

When a break statement is
encountered, it terminates the block
and gets the control out of
the switch or loop.

When a continue statement is
encountered, it gets the control to the
next iteration of the loop.

A break causes the innermost enclosing
loop or switch to be exited
immediately.

A continue inside a loop nested within
a switch causes the next loop iteration.

b) Write a C program that will convert a decimal number into any base.

(6 M)

 Ans:

#include <math.h>

#include <stdio.h>

long long convert(int n);

int main() {

 int n;

 printf("Enter a decimal number: ");

 scanf("%d", &n);

 printf("%d in decimal = %lld in binary", n, convert(n));

 return 0;

}

long long convert(int n) {

 long long bin = 0;

 int rem, i = 1, step = 1;

 while (n != 0) {

 rem = n % 2;

 printf("Step %d: %d/2, Remainder = %d, Quotient = %d\n", step++, n, rem, n /

2);

 n /= 2;

 bin += rem * i;

 i *= 10;

 }

 return bin; }

MUQuestionPapers.com 6

Output:

Enter a decimal number: 19

Step 1: 19/2, Remainder = 1, Quotient = 9

Step 2: 9/2, Remainder = 1, Quotient = 4

Step 3: 4/2, Remainder = 0, Quotient = 2

Step 4: 2/2, Remainder = 0, Quotient = 1

Step 5: 1/2, Remainder = 1, Quotient = 0

19 in decimal = 10011 in binary

c) Write a C program to calculate the sum of following series without

pow() library function S=1-x+x*2/2!-x*3/3!+…………N terms. (8 M)

Ans:

#include <stdio.h>

void main()

{

 float x,sum,no_row;

 int i,n;

 printf("Input the value of x :");

 scanf("%f",&x);

 printf("Input number of terms : ");

 scanf("%d",&n);

 sum =1; no_row = 1;

 for (i=1;i<n;i++)

 {

 no_row = no_row*x/(float)i;

 sum =sum+ no_row;

 }

 printf("\nThe sum is : %f\n",sum);

}

Output:

Input the value of x :3

Input number of terms : 5

The sum is : 16.375000

MUQuestionPapers.com 7

Q.3)

a) What is an array? What does an array name signify? Can array index be

negative? Write a C program to arrange the number stored in an array

in such a way that array will have the odd numbers followed by even

numbers. (10 M)

Ans:

• An array is a data structure that contains a group of elements. Typically these

elements are all of the same data type, such as an integer or string. Arrays are

commonly used in computer programs to organize data so that a related set of

values can be easily sorted or searched.

• Yes, array index can be negative. It can be used to print the array in a reverse

order.

Program:

#include <conio.h>

 int main()

{

 int a[10000],b[10000],i,n,j,k,temp,c=0;

 printf("Enter size of the array : ");

 scanf("%d", &n);

 printf("\nEnter elements in array : ");

 for(i=0; i<n; i++)

 {

 scanf("%d",&a[i]);

 if(a[i]%2==1)

 c++;

 }

 for(i=0; i<n-1; i++)

 {

 for(j=0; j<n-i-1; j++)

 {

 if(a[j]>a[j+1])

 {

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 }

 }

https://techterms.com/definition/datatype
https://techterms.com/definition/integer
https://techterms.com/definition/string

MUQuestionPapers.com 8

 }

 k=0;

 j=n-c;

 for(i=0; i<n; i++)

 {

 if(a[i]%2==0)

 {

 if(k<n-c)

 b[k++]=a[i];

 }

 else

 {

 if(j<n)

 b[j++]=a[i];

 }

 }

 printf("\narray after sorting even and odd elements separately:\n ");

 for(i=0; i<n; i++)

 {

 a[i]=b[i];

 printf("%d ",a[i]);

 }

 }

Output:

Enter size of the array : 9

Enter elements in array : 1 3 5 7 9 2 4 6 8

array after sorting even and odd elements separately:

 1 2 3 4 5 6 7 8

MUQuestionPapers.com 9

b) Write a program that accepts a word from the user and prints in the

following way. For ex. If the word is “STUDY” the program will print it

as

S

ST

STU

STUD

STUDY (10 M)

 Ans:

#include <stdio.h>

#include <string.h>

int main()

{

 char* a=”STUDY”;

 int i,j;

 for(i=0; i<strlen(a); i++)

 {

 for(j=0; j<=i; j++)

 {

 printf("%c",a[j]);

 }

 printf(" ");

}

Output:

S

ST

STU

STUD

STUDY

MUQuestionPapers.com 10

Q.4)

a) What is string? Explain the use of gets()? Write a c program that will

read a word and rewrite it in alphabetical order. For ex. If the word is

“matrix” the program should print “aimrtx”. (10 M)

Ans:

• Strings are defined as an array of characters. The difference between a character

array and a string is the string is terminated with a special character ‘\0’.

• gets():

• Gets function is used to scan a line of text from a standard input device.

• This function will be terminated by a newline character. The nwline character won’t

be included as part of the string. The string may include white space characters.

• Syntax :

 char *gets(char *s);

• This function is declared in the header file stdio.h. It takes a single argument.

• The argument must be a data item representing a string. On successful completion,

shall return a pointer to string s.

#include<stdio.h>

 #include<conio.h>

 int main()

 {

 char str[100],temp;

 int i,j;

 clrscr();

 printf("Enter the string :");

 gets(str);

 printf("%s in ascending order is -> ",str);

 for(i=0;str[i];i++)

 {

 for(j=i+1;str[j];j++)

 {

 if(str[j]<str[i])

 {

 temp=str[j];

 str[j]=str[i];

 str[i]=temp;

 }

 }

 }

 printf("%s\n",str);

 getch();

MUQuestionPapers.com 11

 return 0;

}

Output:

Enter the String: matrix

matrix in an ascending order is -> aimrtx

b) Explain recursion and its advantages? Write a recursive c program to

find the factorial of a given number. (10 M)

Ans:

• Recursion: A function that calls itself is called as recursive function and this

technique is called as recursion.

• Advantages:

a. Reduce unnecessary calling of functions.

b. Through Recursion one can solve problems in easy way while its iterative

solution is very big and complex.

c. Extremely useful when applying the same solution.

Program:

#include<stdio.h>

long int multiplyNumbers(int n);

int main() {

 int n;

 printf("Enter a positive integer: ");

 scanf("%d",&n);

 printf("Factorial of %d = %ld", n, multiplyNumbers(n));

 return 0;

}

long int multiplyNumbers(int n) {

 if (n>=1)

 return n*multiplyNumbers(n-1);

 else

 return 1;

}

Output:

Enter a positive integer: 6

Factorial of 6 = 720

MUQuestionPapers.com 12

Q.5)

a) Explain the storage classes with example. (10 M)

Ans:

• The different locations in the computer where we can store data and their

accessibility, initial values etc. very based on the way they are declared. These

different ways are termed as different storage classes.

• In C there are for storage classes, namely

1. Automatic

2. Register

3. Static

4. External or global

• Let us see these storage classes one by one

1. Automatic storage class

In this case data is stored in memory

The initial value of such a variable is garbage

The scope of the variable is local i.e. limited to the function in which it is defined.

The life of such variables is till the control remains in the particular function where

it is defined.

For e.g.:

Int i; or auto int i;

2. Register storage class

In this case data is stored in CPU register

The initial value of such a variable is garbage.

The scope of the variable is local i.e. limited to the function in which it is defined

The life of such variables is till the control remains in the particular function where

it is defined.

For e.g.:

Register int I;

In this case the data is stored in a small memory inside the processor called its

registers.

The advantage of such storage class is that since the data is in the processor itself,

its access and operation on such data is faster.

There is limitation on the size of the data that can declared to be register storage

class. The data should be such that it doesn’t require more than 4 bytes. Hence

double and long double data types cannot be declared as a register.

Also there is a limitation on the maximum number of variables in a function that

can be a register class. The limitation is that a maximum of 3 register class variable

can be declared in a function.

3. Static storage class

In this case data is stored in a memory

MUQuestionPapers.com 13

The initial value of such a variable is zero

The scope of the variable is local i.e. limited to the function in which it is defined

The life of such variable is till the program is alive.

For e.g.:

Static int I;

If a variable is declared static, its value remains unchanged even If the function

execution is completed.

When the execution to that function returns, the previous value is retained.

Thus it says the initialization is only once. If you have an initialization statement of a

static member, it will be executed only once i.e. for the first time when this

function is called.

4. External or global storage class

In this case data is stored in memory

The initial value of such a variable is zero.

The scope of the variable is global i.e. it is accessible from anywhere in the

program.

The life such a variable is till the program is alive.

b) Declare a structure to store the information of 10 cricketers.

i. Cricketer name

ii. Matches Played

iii. Runs Scored

iv. Strike Rate

Use a function to display the cricketer information having the

maximum strike rate. (10 M)

 Ans:

Program:

#include<stdio.h>

#include<conio.h>

struct Cricketer

{

 name[50];

 int matches;

 int runs;

 float strike;

void main()

{

 struct Cricketer e[100];

 int n,i,maximum = 0;

MUQuestionPapers.com 14

 clrscr();

 printf("Enter the number of Cricketers");

 scanf("%d",&n);

 for(i=0;i<=n-1;i++)

 {

 printf("\nEnter name,matches,runs, strike");

 scanf("%s%d%d%d",&e[i].name,&e[i].matches,&e[i].runs,&e[i].strike);

 }

 printf("\nName\t\tMatches\t\tRuns\t\tStrike\n");

 printf("--");

 for(i=0;i<=n-1;i++)

 {

 printf("%s%d%d%d",&e[i].name,&e[i].matches,&e[i].runs,&e[i].strike);

 }

Maximum = e[i].strike;

For(i=0;i<=n-1;i++)

{

if(e[maximum].strike < e[i].strike)

 highest = i;

}

printf(“/nThe maximum strike rate is %d”,e[maximum].strike);

 getch();

}

Output:

Enter number of Cricketers 10

Enter Name, matches, runs, strike

John

100

20000

35.5

Enter Name, matches, runs, strike

sam

101

20200

37.5

Enter Name, matches, runs, strike

Miller

105

20080

38.5

MUQuestionPapers.com 15

Enter Name, matches, runs, strike

Dale

107

20400

36.5

Enter Name, matches, runs, strike

Smith

105

20700

39.5

Enter Name, matches, runs, strike

david

106

28000

40.5

Enter Name, matches, runs, strike

Dhoni

110

20500

42.5

Enter Name, matches, runs, strike

Johny

107

20600

35.5

Enter Name, matches, runs, strike

kohli

120

20000

36.5

Enter Name, matches, runs, strike

Rohit

103

20700

36.5

MUQuestionPapers.com 16

Name Matches Runs Strike

John 100 20000 35.5

Sam 101 20200 37.5

Miller 105 20080 38.5

Dale 107 20400 36.5

Smith 105 20700 39.5

David 106 28000 40.5

Dhoni 110 20500 42.5

Johny 107 20600 35.5

kohli 120 20000 36.5

Rohit 103 20700 36.5

The maximum strike rate is 42.5

Q.6)

a) How do pointers differ from variable in C? Write a c program to add

two pointers. (10 M)

Ans:

• Pointers are variables that are used to store the address of another variable.

• Address of a variable is the memory location number which is allotted to the

variable.

The memory addresses are 0, 1, 2, 3… and so on up to the capacity of the memory.

The address is normally displayed in hexadecimal form. Hexadecimal form is a

representation of number somewhat similar to binary number. Here four binary

digits are combined together to form a hexadecimal number.

• Pointers unlike other variables do not store values. As stated they store the

address of other variables.

• It is already mentioned in the first statement that pointers are also variables.

Hence, we can also have a pointer that is pointing to another pointer.

• Syntax of pointer declaration : Data_type *ptr_name;

• Wherein “Data_type” is the data type of the variable to which the pointer is

supposed to point. If we want a pointer to point to an integer than, we need to

have the data type of the pointer as “int”, for a float type data pointer should also

be of the “float” type and so on.

• The “ptr_name” is an identifier i.e. the name of the pointer. The same rules of

identifiers apply to the pointer name as to any other variable declaration. The most

important difference in the declaration of a pointer is the “*” sign given before the

pointer name.

• Hence, according to the syntax seen above, if we want to declare a pointer for

“int” type data then we can declare it as given in the example below: int *p; Here,

MUQuestionPapers.com 17

the pointer name is “p”. Hence, “p” can be used as a pointer to point to any of the

variable of type “int”.

• Syntax : data_type *var_name;

• Example : int *p; char *p;

Program:

#include <stdio.h>
int main()
{
 int first, second, *p, *q, sum;

 printf("Enter two integers to add\n");
 scanf("%d%d", &first, &second);

 p = &first;
 q = &second;

 sum = *p + *q;

 printf("Sum of the numbers = %d\n", sum);

 return 0;
}

Output:
Enter two integers to add
4
5
Sum of entered number is 9

b) What is file? Write a c program that include the menu that must have

the following capabilities

i. Enter the several lines of text and store them in data file.

ii. Retrieve and display the particular line

iii. Delete n lines (10 M)

 Ans:

• For file handling or accessing the contents of file, there are certain predefined
functions available in the C programming language.

MUQuestionPapers.com 18

• An important thing required to access files is the "FILE pointer". This pointer is used
to point to the values stored in the file. A file pointer is hence to be created for
accessing the files. The syntax for creating a file pointer is as given below: FILE
*<identifier for pointer>; For e.g. FILE *fp;

• Hence in every program we write in this section to access files, we will use this kind
of pointer declaration. This pointer is used to point the data to be accessed in the file
i.e. whenever a data is read or written in the file, it is from the location pointed by
the file pointer "fp".

Program:

#include <stdio.h>

int main ()

{

 FILE * fptr;

 int i,n;

 char str[100];

 char fname[20]="test.txt";

 char str1;

 printf(" Input the number of lines to be written : ");

 scanf("%d", &n);

 printf("\n :: The lines are ::\n");

 fptr = fopen (fname,"w");

 for(i = 0; i < n+1;i++)

 {

 fgets(str, sizeof str, stdin);

 fputs(str, fptr);

 }

 fclose (fptr);

/*-------------- read the file -------------------------------------*/

 fptr = fopen (fname, "r");

 printf("\n The content of the file %s is :\n",fname);

 str1 = fgetc(fptr);

 while (str1 != EOF)

 {

 printf ("%c", str1);

 str1 = fgetc(fptr);

 }

 printf("\n\n");

 fclose (fptr);

/*--*/

 FILE *fp1, *fp2;

 char filename[40];

 char c;

 int del_line, temp = 1;

MUQuestionPapers.com 19

 printf("Enter file name: ");

 scanf("%s", filename);

 fp1 = fopen(filename, "r");

 c = getc(fp1);

 while (c != EOF)

 {

 printf("%c", c);

 c = getc(fp1);

 }

 //rewind

 rewind(fp1);

 printf(" \n Enter line number of the line to be deleted:");

 scanf("%d", &del_line);

 fp2 = fopen("copy.c", "w");

 c = getc(fp1);

 while (c != EOF) {

 c = getc(fp1);

 if (c == '\n')

 temp++;

 if (temp != del_line)

 {

 putc(c, fp2);

 }

 }

 fclose(fp1);

 fclose(fp2);

 remove(filename);

 rename("copy.c", filename);

 printf("\n The contents of file after being modified are as follows:\n");

 fp1 = fopen(filename, "r");

 c = getc(fp1);

 while (c != EOF) {

 printf("%c", c);

 c = getc(fp1);

 }

 fclose(fp1);

 return 0;

 }

MUQuestionPapers.com 20

Output:

Input the number of lines to be written : 4

 :: The lines are ::

test line 1

test line 2

test line 3

test line 4

 The content of the file test.txt is :

test line 1

test line 2

test line 3

test line 4

Enter line number of the line to be deleted: 2

The content of the file after being modified are as follows:

test line 3

test line 4

